This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at index (n-1) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index (N-1) of the original word. (Contributed by AV, 18-May-2018) (Revised by AV, 21-May-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidxn | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( N - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> W e. Word V ) |
|
| 2 | elfzelz | |- ( N e. ( 1 ... ( # ` W ) ) -> N e. ZZ ) |
|
| 3 | 2 | adantl | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> N e. ZZ ) |
| 4 | elfz1b | |- ( N e. ( 1 ... ( # ` W ) ) <-> ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) ) |
|
| 5 | simp2 | |- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( # ` W ) e. NN ) |
|
| 6 | 4 5 | sylbi | |- ( N e. ( 1 ... ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 7 | 6 | adantl | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( # ` W ) e. NN ) |
| 8 | fzo0end | |- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 10 | cshwidxmod | |- ( ( W e. Word V /\ N e. ZZ /\ ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) ) |
|
| 11 | 1 3 9 10 | syl3anc | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) ) |
| 12 | nncn | |- ( ( # ` W ) e. NN -> ( # ` W ) e. CC ) |
|
| 13 | 12 | adantl | |- ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( # ` W ) e. CC ) |
| 14 | 1cnd | |- ( ( N e. NN /\ ( # ` W ) e. NN ) -> 1 e. CC ) |
|
| 15 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 16 | 15 | adantr | |- ( ( N e. NN /\ ( # ` W ) e. NN ) -> N e. CC ) |
| 17 | 13 14 16 | 3jca | |- ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) ) |
| 18 | 17 | 3adant3 | |- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) ) |
| 19 | 4 18 | sylbi | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) ) |
| 20 | subadd23 | |- ( ( ( # ` W ) e. CC /\ 1 e. CC /\ N e. CC ) -> ( ( ( # ` W ) - 1 ) + N ) = ( ( # ` W ) + ( N - 1 ) ) ) |
|
| 21 | 19 20 | syl | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( # ` W ) - 1 ) + N ) = ( ( # ` W ) + ( N - 1 ) ) ) |
| 22 | 21 | oveq1d | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) = ( ( ( # ` W ) + ( N - 1 ) ) mod ( # ` W ) ) ) |
| 23 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 24 | 23 | 3ad2ant1 | |- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N - 1 ) e. NN0 ) |
| 25 | simp3 | |- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> N <_ ( # ` W ) ) |
|
| 26 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 27 | nnz | |- ( ( # ` W ) e. NN -> ( # ` W ) e. ZZ ) |
|
| 28 | 26 27 | anim12i | |- ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( N e. ZZ /\ ( # ` W ) e. ZZ ) ) |
| 29 | 28 | 3adant3 | |- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N e. ZZ /\ ( # ` W ) e. ZZ ) ) |
| 30 | zlem1lt | |- ( ( N e. ZZ /\ ( # ` W ) e. ZZ ) -> ( N <_ ( # ` W ) <-> ( N - 1 ) < ( # ` W ) ) ) |
|
| 31 | 29 30 | syl | |- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N <_ ( # ` W ) <-> ( N - 1 ) < ( # ` W ) ) ) |
| 32 | 25 31 | mpbid | |- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( N - 1 ) < ( # ` W ) ) |
| 33 | 24 5 32 | 3jca | |- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( ( N - 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( N - 1 ) < ( # ` W ) ) ) |
| 34 | 4 33 | sylbi | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( N - 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( N - 1 ) < ( # ` W ) ) ) |
| 35 | addmodid | |- ( ( ( N - 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( N - 1 ) < ( # ` W ) ) -> ( ( ( # ` W ) + ( N - 1 ) ) mod ( # ` W ) ) = ( N - 1 ) ) |
|
| 36 | 34 35 | syl | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( # ` W ) + ( N - 1 ) ) mod ( # ` W ) ) = ( N - 1 ) ) |
| 37 | 22 36 | eqtrd | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) = ( N - 1 ) ) |
| 38 | 37 | fveq2d | |- ( N e. ( 1 ... ( # ` W ) ) -> ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) = ( W ` ( N - 1 ) ) ) |
| 39 | 38 | adantl | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( W ` ( ( ( ( # ` W ) - 1 ) + N ) mod ( # ` W ) ) ) = ( W ` ( N - 1 ) ) ) |
| 40 | 11 39 | eqtrd | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - 1 ) ) = ( W ` ( N - 1 ) ) ) |