This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at index (n-1) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index (N-1) of the original word. (Contributed by AV, 18-May-2018) (Revised by AV, 21-May-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidxn | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | elfzelz | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℤ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ℤ ) |
| 4 | elfz1b | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 5 | simp2 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 6 | 4 5 | sylbi | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 8 | fzo0end | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 10 | cshwidxmod | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 11 | 1 3 9 10 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 12 | nncn | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℂ ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 14 | 1cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → 1 ∈ ℂ ) | |
| 15 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 17 | 13 14 16 | 3jca | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 18 | 17 | 3adant3 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 19 | 4 18 | sylbi | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 20 | subadd23 | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 𝑁 ) = ( ( ♯ ‘ 𝑊 ) + ( 𝑁 − 1 ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 𝑁 ) = ( ( ♯ ‘ 𝑊 ) + ( 𝑁 − 1 ) ) ) |
| 22 | 21 | oveq1d | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( ♯ ‘ 𝑊 ) + ( 𝑁 − 1 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 23 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 25 | simp3 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) | |
| 26 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 27 | nnz | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℤ ) | |
| 28 | 26 27 | anim12i | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) ) |
| 29 | 28 | 3adant3 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) ) |
| 30 | zlem1lt | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ) → ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ↔ ( 𝑁 − 1 ) < ( ♯ ‘ 𝑊 ) ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ↔ ( 𝑁 − 1 ) < ( ♯ ‘ 𝑊 ) ) ) |
| 32 | 25 31 | mpbid | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑁 − 1 ) < ( ♯ ‘ 𝑊 ) ) |
| 33 | 24 5 32 | 3jca | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ( 𝑁 − 1 ) < ( ♯ ‘ 𝑊 ) ) ) |
| 34 | 4 33 | sylbi | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ( 𝑁 − 1 ) < ( ♯ ‘ 𝑊 ) ) ) |
| 35 | addmodid | ⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ( 𝑁 − 1 ) < ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) + ( 𝑁 − 1 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝑁 − 1 ) ) | |
| 36 | 34 35 | syl | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) + ( 𝑁 − 1 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝑁 − 1 ) ) |
| 37 | 22 36 | eqtrd | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝑁 − 1 ) ) |
| 38 | 37 | fveq2d | ⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
| 39 | 38 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
| 40 | 11 39 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |