This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018) (Proof shortened by AV, 5-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addmodid | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( M + A ) mod M ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 2 | 1 | mullidd | |- ( M e. NN -> ( 1 x. M ) = M ) |
| 3 | 2 | 3ad2ant2 | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( 1 x. M ) = M ) |
| 4 | 3 | eqcomd | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> M = ( 1 x. M ) ) |
| 5 | 4 | oveq1d | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( M + A ) = ( ( 1 x. M ) + A ) ) |
| 6 | 5 | oveq1d | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( M + A ) mod M ) = ( ( ( 1 x. M ) + A ) mod M ) ) |
| 7 | 1zzd | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> 1 e. ZZ ) |
|
| 8 | nnrp | |- ( M e. NN -> M e. RR+ ) |
|
| 9 | 8 | 3ad2ant2 | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> M e. RR+ ) |
| 10 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 11 | 10 | rexrd | |- ( A e. NN0 -> A e. RR* ) |
| 12 | 11 | 3ad2ant1 | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> A e. RR* ) |
| 13 | nn0ge0 | |- ( A e. NN0 -> 0 <_ A ) |
|
| 14 | 13 | 3ad2ant1 | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> 0 <_ A ) |
| 15 | simp3 | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> A < M ) |
|
| 16 | 0xr | |- 0 e. RR* |
|
| 17 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 18 | 17 | rexrd | |- ( M e. NN -> M e. RR* ) |
| 19 | 18 | 3ad2ant2 | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> M e. RR* ) |
| 20 | elico1 | |- ( ( 0 e. RR* /\ M e. RR* ) -> ( A e. ( 0 [,) M ) <-> ( A e. RR* /\ 0 <_ A /\ A < M ) ) ) |
|
| 21 | 16 19 20 | sylancr | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( A e. ( 0 [,) M ) <-> ( A e. RR* /\ 0 <_ A /\ A < M ) ) ) |
| 22 | 12 14 15 21 | mpbir3and | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> A e. ( 0 [,) M ) ) |
| 23 | muladdmodid | |- ( ( 1 e. ZZ /\ M e. RR+ /\ A e. ( 0 [,) M ) ) -> ( ( ( 1 x. M ) + A ) mod M ) = A ) |
|
| 24 | 7 9 22 23 | syl3anc | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( ( 1 x. M ) + A ) mod M ) = A ) |
| 25 | 6 24 | eqtrd | |- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( M + A ) mod M ) = A ) |