This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word which contains a symbol at most once results in a word which contains a symbol at most once. (Contributed by AV, 14-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshf1 | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ S e. ZZ /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A -> F : ( 0 ..^ ( # ` F ) ) --> A ) |
|
| 2 | iswrdi | |- ( F : ( 0 ..^ ( # ` F ) ) --> A -> F e. Word A ) |
|
| 3 | 1 2 | syl | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A -> F e. Word A ) |
| 4 | cshwf | |- ( ( F e. Word A /\ S e. ZZ ) -> ( F cyclShift S ) : ( 0 ..^ ( # ` F ) ) --> A ) |
|
| 5 | 4 | 3adant1 | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) -> ( F cyclShift S ) : ( 0 ..^ ( # ` F ) ) --> A ) |
| 6 | 5 | adantr | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> ( F cyclShift S ) : ( 0 ..^ ( # ` F ) ) --> A ) |
| 7 | feq1 | |- ( G = ( F cyclShift S ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A <-> ( F cyclShift S ) : ( 0 ..^ ( # ` F ) ) --> A ) ) |
|
| 8 | 7 | adantl | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A <-> ( F cyclShift S ) : ( 0 ..^ ( # ` F ) ) --> A ) ) |
| 9 | 6 8 | mpbird | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) --> A ) |
| 10 | dff13 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A <-> ( F : ( 0 ..^ ( # ` F ) ) --> A /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
|
| 11 | fveq1 | |- ( G = ( F cyclShift S ) -> ( G ` i ) = ( ( F cyclShift S ) ` i ) ) |
|
| 12 | 11 | 3ad2ant1 | |- ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( G ` i ) = ( ( F cyclShift S ) ` i ) ) |
| 13 | 12 | adantr | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( G ` i ) = ( ( F cyclShift S ) ` i ) ) |
| 14 | cshwidxmod | |- ( ( F e. Word A /\ S e. ZZ /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) |
|
| 15 | 14 | 3expia | |- ( ( F e. Word A /\ S e. ZZ ) -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) ) |
| 16 | 15 | 3adant1 | |- ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) ) |
| 17 | 16 | com12 | |- ( i e. ( 0 ..^ ( # ` F ) ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) ) |
| 18 | 17 | adantr | |- ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) ) |
| 19 | 18 | impcom | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( F cyclShift S ) ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) |
| 20 | 13 19 | eqtrd | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( G ` i ) = ( F ` ( ( i + S ) mod ( # ` F ) ) ) ) |
| 21 | fveq1 | |- ( G = ( F cyclShift S ) -> ( G ` j ) = ( ( F cyclShift S ) ` j ) ) |
|
| 22 | 21 | 3ad2ant1 | |- ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( G ` j ) = ( ( F cyclShift S ) ` j ) ) |
| 23 | 22 | adantr | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( G ` j ) = ( ( F cyclShift S ) ` j ) ) |
| 24 | cshwidxmod | |- ( ( F e. Word A /\ S e. ZZ /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) |
|
| 25 | 24 | 3expia | |- ( ( F e. Word A /\ S e. ZZ ) -> ( j e. ( 0 ..^ ( # ` F ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) |
| 26 | 25 | 3adant1 | |- ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( j e. ( 0 ..^ ( # ` F ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) |
| 27 | 26 | adantld | |- ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) |
| 28 | 27 | imp | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) |
| 29 | 23 28 | eqtrd | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( G ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) |
| 30 | 20 29 | eqeq12d | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( G ` i ) = ( G ` j ) <-> ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) |
| 31 | 30 | adantlr | |- ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( G ` i ) = ( G ` j ) <-> ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) |
| 32 | elfzo0 | |- ( i e. ( 0 ..^ ( # ` F ) ) <-> ( i e. NN0 /\ ( # ` F ) e. NN /\ i < ( # ` F ) ) ) |
|
| 33 | nn0z | |- ( i e. NN0 -> i e. ZZ ) |
|
| 34 | 33 | adantr | |- ( ( i e. NN0 /\ ( # ` F ) e. NN ) -> i e. ZZ ) |
| 35 | 34 | adantl | |- ( ( S e. ZZ /\ ( i e. NN0 /\ ( # ` F ) e. NN ) ) -> i e. ZZ ) |
| 36 | simpl | |- ( ( S e. ZZ /\ ( i e. NN0 /\ ( # ` F ) e. NN ) ) -> S e. ZZ ) |
|
| 37 | 35 36 | zaddcld | |- ( ( S e. ZZ /\ ( i e. NN0 /\ ( # ` F ) e. NN ) ) -> ( i + S ) e. ZZ ) |
| 38 | simpr | |- ( ( i e. NN0 /\ ( # ` F ) e. NN ) -> ( # ` F ) e. NN ) |
|
| 39 | 38 | adantl | |- ( ( S e. ZZ /\ ( i e. NN0 /\ ( # ` F ) e. NN ) ) -> ( # ` F ) e. NN ) |
| 40 | 37 39 | jca | |- ( ( S e. ZZ /\ ( i e. NN0 /\ ( # ` F ) e. NN ) ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) |
| 41 | 40 | ex | |- ( S e. ZZ -> ( ( i e. NN0 /\ ( # ` F ) e. NN ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 42 | 41 | 3ad2ant3 | |- ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i e. NN0 /\ ( # ` F ) e. NN ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 43 | 42 | com12 | |- ( ( i e. NN0 /\ ( # ` F ) e. NN ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 44 | 43 | 3adant3 | |- ( ( i e. NN0 /\ ( # ` F ) e. NN /\ i < ( # ` F ) ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 45 | 32 44 | sylbi | |- ( i e. ( 0 ..^ ( # ` F ) ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 46 | 45 | adantr | |- ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 47 | 46 | impcom | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) ) |
| 48 | zmodfzo | |- ( ( ( i + S ) e. ZZ /\ ( # ` F ) e. NN ) -> ( ( i + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) ) |
|
| 49 | 47 48 | syl | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( i + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) ) |
| 50 | elfzo0 | |- ( j e. ( 0 ..^ ( # ` F ) ) <-> ( j e. NN0 /\ ( # ` F ) e. NN /\ j < ( # ` F ) ) ) |
|
| 51 | nn0z | |- ( j e. NN0 -> j e. ZZ ) |
|
| 52 | 51 | adantr | |- ( ( j e. NN0 /\ ( # ` F ) e. NN ) -> j e. ZZ ) |
| 53 | 52 | adantl | |- ( ( S e. ZZ /\ ( j e. NN0 /\ ( # ` F ) e. NN ) ) -> j e. ZZ ) |
| 54 | simpl | |- ( ( S e. ZZ /\ ( j e. NN0 /\ ( # ` F ) e. NN ) ) -> S e. ZZ ) |
|
| 55 | 53 54 | zaddcld | |- ( ( S e. ZZ /\ ( j e. NN0 /\ ( # ` F ) e. NN ) ) -> ( j + S ) e. ZZ ) |
| 56 | simpr | |- ( ( j e. NN0 /\ ( # ` F ) e. NN ) -> ( # ` F ) e. NN ) |
|
| 57 | 56 | adantl | |- ( ( S e. ZZ /\ ( j e. NN0 /\ ( # ` F ) e. NN ) ) -> ( # ` F ) e. NN ) |
| 58 | 55 57 | jca | |- ( ( S e. ZZ /\ ( j e. NN0 /\ ( # ` F ) e. NN ) ) -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) |
| 59 | 58 | expcom | |- ( ( j e. NN0 /\ ( # ` F ) e. NN ) -> ( S e. ZZ -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 60 | 59 | 3adant3 | |- ( ( j e. NN0 /\ ( # ` F ) e. NN /\ j < ( # ` F ) ) -> ( S e. ZZ -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 61 | 50 60 | sylbi | |- ( j e. ( 0 ..^ ( # ` F ) ) -> ( S e. ZZ -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 62 | 61 | com12 | |- ( S e. ZZ -> ( j e. ( 0 ..^ ( # ` F ) ) -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 63 | 62 | 3ad2ant3 | |- ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( j e. ( 0 ..^ ( # ` F ) ) -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 64 | 63 | adantld | |- ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) -> ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) ) |
| 65 | 64 | imp | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) ) |
| 66 | zmodfzo | |- ( ( ( j + S ) e. ZZ /\ ( # ` F ) e. NN ) -> ( ( j + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) ) |
|
| 67 | 65 66 | syl | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( j + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) ) |
| 68 | fveqeq2 | |- ( x = ( ( i + S ) mod ( # ` F ) ) -> ( ( F ` x ) = ( F ` y ) <-> ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` y ) ) ) |
|
| 69 | eqeq1 | |- ( x = ( ( i + S ) mod ( # ` F ) ) -> ( x = y <-> ( ( i + S ) mod ( # ` F ) ) = y ) ) |
|
| 70 | 68 69 | imbi12d | |- ( x = ( ( i + S ) mod ( # ` F ) ) -> ( ( ( F ` x ) = ( F ` y ) -> x = y ) <-> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` y ) -> ( ( i + S ) mod ( # ` F ) ) = y ) ) ) |
| 71 | fveq2 | |- ( y = ( ( j + S ) mod ( # ` F ) ) -> ( F ` y ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) |
|
| 72 | 71 | eqeq2d | |- ( y = ( ( j + S ) mod ( # ` F ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` y ) <-> ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) ) |
| 73 | eqeq2 | |- ( y = ( ( j + S ) mod ( # ` F ) ) -> ( ( ( i + S ) mod ( # ` F ) ) = y <-> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) |
|
| 74 | 72 73 | imbi12d | |- ( y = ( ( j + S ) mod ( # ` F ) ) -> ( ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` y ) -> ( ( i + S ) mod ( # ` F ) ) = y ) <-> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) ) |
| 75 | 70 74 | rspc2v | |- ( ( ( ( i + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) /\ ( ( j + S ) mod ( # ` F ) ) e. ( 0 ..^ ( # ` F ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) ) |
| 76 | 49 67 75 | syl2anc | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) ) |
| 77 | simpr | |- ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) /\ ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) |
|
| 78 | addmodlteq | |- ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) /\ S e. ZZ ) -> ( ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) <-> i = j ) ) |
|
| 79 | 78 | 3expa | |- ( ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) /\ S e. ZZ ) -> ( ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) <-> i = j ) ) |
| 80 | 79 | ancoms | |- ( ( S e. ZZ /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) <-> i = j ) ) |
| 81 | 80 | bicomd | |- ( ( S e. ZZ /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( i = j <-> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) |
| 82 | 81 | 3ad2antl3 | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( i = j <-> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) |
| 83 | 82 | adantr | |- ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) /\ ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) -> ( i = j <-> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) |
| 84 | 77 83 | sylibrd | |- ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) /\ ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> i = j ) ) |
| 85 | 84 | ex | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> ( ( i + S ) mod ( # ` F ) ) = ( ( j + S ) mod ( # ` F ) ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> i = j ) ) ) |
| 86 | 76 85 | syld | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> i = j ) ) ) |
| 87 | 86 | impancom | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) -> ( ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> i = j ) ) ) |
| 88 | 87 | imp | |- ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( F ` ( ( i + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) -> i = j ) ) |
| 89 | 31 88 | sylbid | |- ( ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( i e. ( 0 ..^ ( # ` F ) ) /\ j e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( G ` i ) = ( G ` j ) -> i = j ) ) |
| 90 | 89 | ralrimivva | |- ( ( ( G = ( F cyclShift S ) /\ F e. Word A /\ S e. ZZ ) /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) |
| 91 | 90 | 3exp1 | |- ( G = ( F cyclShift S ) -> ( F e. Word A -> ( S e. ZZ -> ( A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) |
| 92 | 91 | com14 | |- ( A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) -> ( F e. Word A -> ( S e. ZZ -> ( G = ( F cyclShift S ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) |
| 93 | 92 | adantl | |- ( ( F : ( 0 ..^ ( # ` F ) ) --> A /\ A. x e. ( 0 ..^ ( # ` F ) ) A. y e. ( 0 ..^ ( # ` F ) ) ( ( F ` x ) = ( F ` y ) -> x = y ) ) -> ( F e. Word A -> ( S e. ZZ -> ( G = ( F cyclShift S ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) |
| 94 | 10 93 | sylbi | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A -> ( F e. Word A -> ( S e. ZZ -> ( G = ( F cyclShift S ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) |
| 95 | 94 | 3imp1 | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) |
| 96 | 9 95 | jca | |- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ F e. Word A /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) |
| 97 | 96 | 3exp1 | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A -> ( F e. Word A -> ( S e. ZZ -> ( G = ( F cyclShift S ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) ) |
| 98 | 3 97 | mpd | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A -> ( S e. ZZ -> ( G = ( F cyclShift S ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) ) ) |
| 99 | 98 | 3imp | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ S e. ZZ /\ G = ( F cyclShift S ) ) -> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) |
| 100 | dff13 | |- ( G : ( 0 ..^ ( # ` F ) ) -1-1-> A <-> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ A. i e. ( 0 ..^ ( # ` F ) ) A. j e. ( 0 ..^ ( # ` F ) ) ( ( G ` i ) = ( G ` j ) -> i = j ) ) ) |
|
| 101 | 99 100 | sylibr | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ S e. ZZ /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |