This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at index ((n-N)-1) of a word of length n (not 0) cyclically shifted by N positions is the symbol at index (n-1) of the original word. (Contributed by AV, 23-Mar-2018) (Revised by AV, 21-May-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidxm1 | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( ( # ` W ) - N ) - 1 ) ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word V ) |
|
| 2 | elfzoelz | |- ( N e. ( 0 ..^ ( # ` W ) ) -> N e. ZZ ) |
|
| 3 | 2 | adantl | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> N e. ZZ ) |
| 4 | ubmelm1fzo | |- ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( ( # ` W ) - N ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 5 | 4 | adantl | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - N ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 6 | cshwidxmod | |- ( ( W e. Word V /\ N e. ZZ /\ ( ( ( # ` W ) - N ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( ( # ` W ) - N ) - 1 ) ) = ( W ` ( ( ( ( ( # ` W ) - N ) - 1 ) + N ) mod ( # ` W ) ) ) ) |
|
| 7 | 1 3 5 6 | syl3anc | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( ( # ` W ) - N ) - 1 ) ) = ( W ` ( ( ( ( ( # ` W ) - N ) - 1 ) + N ) mod ( # ` W ) ) ) ) |
| 8 | elfzoel2 | |- ( N e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. ZZ ) |
|
| 9 | 8 | zcnd | |- ( N e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. CC ) |
| 10 | 2 | zcnd | |- ( N e. ( 0 ..^ ( # ` W ) ) -> N e. CC ) |
| 11 | 1cnd | |- ( N e. ( 0 ..^ ( # ` W ) ) -> 1 e. CC ) |
|
| 12 | nnpcan | |- ( ( ( # ` W ) e. CC /\ N e. CC /\ 1 e. CC ) -> ( ( ( ( # ` W ) - N ) - 1 ) + N ) = ( ( # ` W ) - 1 ) ) |
|
| 13 | 9 10 11 12 | syl3anc | |- ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( ( ( # ` W ) - N ) - 1 ) + N ) = ( ( # ` W ) - 1 ) ) |
| 14 | 13 | oveq1d | |- ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( ( ( ( # ` W ) - N ) - 1 ) + N ) mod ( # ` W ) ) = ( ( ( # ` W ) - 1 ) mod ( # ` W ) ) ) |
| 15 | 14 | adantl | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( ( ( # ` W ) - N ) - 1 ) + N ) mod ( # ` W ) ) = ( ( ( # ` W ) - 1 ) mod ( # ` W ) ) ) |
| 16 | elfzo0 | |- ( N e. ( 0 ..^ ( # ` W ) ) <-> ( N e. NN0 /\ ( # ` W ) e. NN /\ N < ( # ` W ) ) ) |
|
| 17 | nnre | |- ( ( # ` W ) e. NN -> ( # ` W ) e. RR ) |
|
| 18 | peano2rem | |- ( ( # ` W ) e. RR -> ( ( # ` W ) - 1 ) e. RR ) |
|
| 19 | 17 18 | syl | |- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. RR ) |
| 20 | nnrp | |- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
|
| 21 | 19 20 | jca | |- ( ( # ` W ) e. NN -> ( ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR+ ) ) |
| 22 | 21 | 3ad2ant2 | |- ( ( N e. NN0 /\ ( # ` W ) e. NN /\ N < ( # ` W ) ) -> ( ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR+ ) ) |
| 23 | 16 22 | sylbi | |- ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR+ ) ) |
| 24 | nnm1ge0 | |- ( ( # ` W ) e. NN -> 0 <_ ( ( # ` W ) - 1 ) ) |
|
| 25 | 24 | 3ad2ant2 | |- ( ( N e. NN0 /\ ( # ` W ) e. NN /\ N < ( # ` W ) ) -> 0 <_ ( ( # ` W ) - 1 ) ) |
| 26 | 16 25 | sylbi | |- ( N e. ( 0 ..^ ( # ` W ) ) -> 0 <_ ( ( # ` W ) - 1 ) ) |
| 27 | zre | |- ( ( # ` W ) e. ZZ -> ( # ` W ) e. RR ) |
|
| 28 | 27 | ltm1d | |- ( ( # ` W ) e. ZZ -> ( ( # ` W ) - 1 ) < ( # ` W ) ) |
| 29 | 8 28 | syl | |- ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( # ` W ) - 1 ) < ( # ` W ) ) |
| 30 | 23 26 29 | jca32 | |- ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR+ ) /\ ( 0 <_ ( ( # ` W ) - 1 ) /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) ) |
| 31 | 30 | adantl | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR+ ) /\ ( 0 <_ ( ( # ` W ) - 1 ) /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) ) |
| 32 | modid | |- ( ( ( ( ( # ` W ) - 1 ) e. RR /\ ( # ` W ) e. RR+ ) /\ ( 0 <_ ( ( # ` W ) - 1 ) /\ ( ( # ` W ) - 1 ) < ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) mod ( # ` W ) ) = ( ( # ` W ) - 1 ) ) |
|
| 33 | 31 32 | syl | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) - 1 ) mod ( # ` W ) ) = ( ( # ` W ) - 1 ) ) |
| 34 | 15 33 | eqtrd | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( ( ( # ` W ) - N ) - 1 ) + N ) mod ( # ` W ) ) = ( ( # ` W ) - 1 ) ) |
| 35 | 34 | fveq2d | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( ( ( ( # ` W ) - N ) - 1 ) + N ) mod ( # ` W ) ) ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
| 36 | 7 35 | eqtrd | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( ( # ` W ) - N ) - 1 ) ) = ( W ` ( ( # ` W ) - 1 ) ) ) |