This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at index (n-N) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index 0 of the original word. (Contributed by AV, 18-May-2018) (Revised by AV, 21-May-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidxm | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - N ) ) = ( W ` 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> W e. Word V ) |
|
| 2 | elfzelz | |- ( N e. ( 1 ... ( # ` W ) ) -> N e. ZZ ) |
|
| 3 | 2 | adantl | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> N e. ZZ ) |
| 4 | ubmelfzo | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( # ` W ) - N ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 5 | 4 | adantl | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( # ` W ) - N ) e. ( 0 ..^ ( # ` W ) ) ) |
| 6 | cshwidxmod | |- ( ( W e. Word V /\ N e. ZZ /\ ( ( # ` W ) - N ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - N ) ) = ( W ` ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) ) ) |
|
| 7 | 1 3 5 6 | syl3anc | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - N ) ) = ( W ` ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) ) ) |
| 8 | elfz1b | |- ( N e. ( 1 ... ( # ` W ) ) <-> ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) ) |
|
| 9 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 10 | nncn | |- ( ( # ` W ) e. NN -> ( # ` W ) e. CC ) |
|
| 11 | 9 10 | anim12ci | |- ( ( N e. NN /\ ( # ` W ) e. NN ) -> ( ( # ` W ) e. CC /\ N e. CC ) ) |
| 12 | 11 | 3adant3 | |- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( ( # ` W ) e. CC /\ N e. CC ) ) |
| 13 | 8 12 | sylbi | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( # ` W ) e. CC /\ N e. CC ) ) |
| 14 | npcan | |- ( ( ( # ` W ) e. CC /\ N e. CC ) -> ( ( ( # ` W ) - N ) + N ) = ( # ` W ) ) |
|
| 15 | 13 14 | syl | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( # ` W ) - N ) + N ) = ( # ` W ) ) |
| 16 | 15 | oveq1d | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) = ( ( # ` W ) mod ( # ` W ) ) ) |
| 17 | 16 | adantl | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) = ( ( # ` W ) mod ( # ` W ) ) ) |
| 18 | nnrp | |- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
|
| 19 | modid0 | |- ( ( # ` W ) e. RR+ -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
|
| 20 | 18 19 | syl | |- ( ( # ` W ) e. NN -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
| 21 | 20 | 3ad2ant2 | |- ( ( N e. NN /\ ( # ` W ) e. NN /\ N <_ ( # ` W ) ) -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
| 22 | 8 21 | sylbi | |- ( N e. ( 1 ... ( # ` W ) ) -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
| 23 | 22 | adantl | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( # ` W ) mod ( # ` W ) ) = 0 ) |
| 24 | 17 23 | eqtrd | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) = 0 ) |
| 25 | 24 | fveq2d | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( W ` ( ( ( ( # ` W ) - N ) + N ) mod ( # ` W ) ) ) = ( W ` 0 ) ) |
| 26 | 7 25 | eqtrd | |- ( ( W e. Word V /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W cyclShift N ) ` ( ( # ` W ) - N ) ) = ( W ` 0 ) ) |