This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnpcan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) - C ) + B ) = ( A - C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - B ) e. CC ) |
| 3 | addsub | |- ( ( ( A - B ) e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( ( ( A - B ) - C ) + B ) ) |
|
| 4 | 3 | eqcomd | |- ( ( ( A - B ) e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) - C ) + B ) = ( ( ( A - B ) + B ) - C ) ) |
| 5 | 2 4 | syld3an1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) - C ) + B ) = ( ( ( A - B ) + B ) - C ) ) |
| 6 | npcan | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + B ) = A ) |
|
| 7 | 6 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + B ) = A ) |
| 8 | 7 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( A - C ) ) |
| 9 | 5 8 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) - C ) + B ) = ( A - C ) ) |