This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two sets that are strictly dominated by the infinite set X is also strictly dominated by X . (Contributed by Mario Carneiro, 3-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infunsdom | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) -> ( A u. B ) ~< X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
| 2 | infunsdom1 | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~<_ B /\ B ~< X ) ) -> ( A u. B ) ~< X ) |
|
| 3 | 2 | anass1rs | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ B ~< X ) /\ A ~<_ B ) -> ( A u. B ) ~< X ) |
| 4 | 3 | adantlrl | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) /\ A ~<_ B ) -> ( A u. B ) ~< X ) |
| 5 | 1 4 | sylan2 | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) /\ A ~< B ) -> ( A u. B ) ~< X ) |
| 6 | simpll | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) -> X e. dom card ) |
|
| 7 | sdomdom | |- ( B ~< X -> B ~<_ X ) |
|
| 8 | 7 | ad2antll | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) -> B ~<_ X ) |
| 9 | numdom | |- ( ( X e. dom card /\ B ~<_ X ) -> B e. dom card ) |
|
| 10 | 6 8 9 | syl2anc | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) -> B e. dom card ) |
| 11 | sdomdom | |- ( A ~< X -> A ~<_ X ) |
|
| 12 | 11 | ad2antrl | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) -> A ~<_ X ) |
| 13 | numdom | |- ( ( X e. dom card /\ A ~<_ X ) -> A e. dom card ) |
|
| 14 | 6 12 13 | syl2anc | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) -> A e. dom card ) |
| 15 | domtri2 | |- ( ( B e. dom card /\ A e. dom card ) -> ( B ~<_ A <-> -. A ~< B ) ) |
|
| 16 | 10 14 15 | syl2anc | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) -> ( B ~<_ A <-> -. A ~< B ) ) |
| 17 | 16 | biimpar | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) /\ -. A ~< B ) -> B ~<_ A ) |
| 18 | uncom | |- ( A u. B ) = ( B u. A ) |
|
| 19 | infunsdom1 | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( B ~<_ A /\ A ~< X ) ) -> ( B u. A ) ~< X ) |
|
| 20 | 18 19 | eqbrtrid | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( B ~<_ A /\ A ~< X ) ) -> ( A u. B ) ~< X ) |
| 21 | 20 | anass1rs | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ A ~< X ) /\ B ~<_ A ) -> ( A u. B ) ~< X ) |
| 22 | 21 | adantlrr | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) /\ B ~<_ A ) -> ( A u. B ) ~< X ) |
| 23 | 17 22 | syldan | |- ( ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) /\ -. A ~< B ) -> ( A u. B ) ~< X ) |
| 24 | 5 23 | pm2.61dan | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( A ~< X /\ B ~< X ) ) -> ( A u. B ) ~< X ) |