This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inner product times its conjugate. (Contributed by NM, 23-Nov-2007) (Revised by AV, 19-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| Assertion | cphipipcj | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) x. ( B ., A ) ) = ( ( abs ` ( A ., B ) ) ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | 2 1 | cphipcl | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. CC ) |
| 4 | absval | |- ( ( A ., B ) e. CC -> ( abs ` ( A ., B ) ) = ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ) |
|
| 5 | 3 4 | syl | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( abs ` ( A ., B ) ) = ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ) |
| 6 | 5 | oveq1d | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( abs ` ( A ., B ) ) ^ 2 ) = ( ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ^ 2 ) ) |
| 7 | 3 | cjcld | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) e. CC ) |
| 8 | 3 7 | mulcld | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) x. ( * ` ( A ., B ) ) ) e. CC ) |
| 9 | 8 | sqsqrtd | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( sqrt ` ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) ^ 2 ) = ( ( A ., B ) x. ( * ` ( A ., B ) ) ) ) |
| 10 | 1 2 | cphipcj | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) = ( B ., A ) ) |
| 11 | 10 | oveq2d | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) x. ( * ` ( A ., B ) ) ) = ( ( A ., B ) x. ( B ., A ) ) ) |
| 12 | 6 9 11 | 3eqtrrd | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( A ., B ) x. ( B ., A ) ) = ( ( abs ` ( A ., B ) ) ^ 2 ) ) |