This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inner product times its conjugate. (Contributed by NM, 23-Nov-2007) (Revised by AV, 19-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| Assertion | cphipipcj | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( 𝐵 , 𝐴 ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | 2 1 | cphipcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
| 4 | absval | ⊢ ( ( 𝐴 , 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐴 , 𝐵 ) ) = ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( abs ‘ ( 𝐴 , 𝐵 ) ) = ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = ( ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) ↑ 2 ) ) |
| 7 | 3 | cjcld | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ∈ ℂ ) |
| 8 | 3 7 | mulcld | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ∈ ℂ ) |
| 9 | 8 | sqsqrtd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) ↑ 2 ) = ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) |
| 10 | 1 2 | cphipcj | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) = ( ( 𝐴 , 𝐵 ) · ( 𝐵 , 𝐴 ) ) ) |
| 12 | 6 9 11 | 3eqtrrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( 𝐵 , 𝐴 ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) |