This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjugate of an inner product in a subcomplex pre-Hilbert space. Complex version of ipcj . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| Assertion | cphipcj | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) = ( B ., A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 4 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 5 | 4 | clmcj | |- ( W e. CMod -> * = ( *r ` ( Scalar ` W ) ) ) |
| 6 | 3 5 | syl | |- ( W e. CPreHil -> * = ( *r ` ( Scalar ` W ) ) ) |
| 7 | 6 | 3ad2ant1 | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> * = ( *r ` ( Scalar ` W ) ) ) |
| 8 | 7 | fveq1d | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) = ( ( *r ` ( Scalar ` W ) ) ` ( A ., B ) ) ) |
| 9 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 10 | eqid | |- ( *r ` ( Scalar ` W ) ) = ( *r ` ( Scalar ` W ) ) |
|
| 11 | 4 1 2 10 | ipcj | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( ( *r ` ( Scalar ` W ) ) ` ( A ., B ) ) = ( B ., A ) ) |
| 12 | 9 11 | syl3an1 | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( ( *r ` ( Scalar ` W ) ) ` ( A ., B ) ) = ( B ., A ) ) |
| 13 | 8 12 | eqtrd | |- ( ( W e. CPreHil /\ A e. V /\ B e. V ) -> ( * ` ( A ., B ) ) = ( B ., A ) ) |