This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of the arcsine function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efiasin | |- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asinval | |- ( A e. CC -> ( arcsin ` A ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
|
| 2 | 1 | oveq2d | |- ( A e. CC -> ( _i x. ( arcsin ` A ) ) = ( _i x. ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | 3 | a1i | |- ( A e. CC -> _i e. CC ) |
| 5 | negicn | |- -u _i e. CC |
|
| 6 | 5 | a1i | |- ( A e. CC -> -u _i e. CC ) |
| 7 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 8 | 3 7 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 9 | ax-1cn | |- 1 e. CC |
|
| 10 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 11 | subcl | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
|
| 12 | 9 10 11 | sylancr | |- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 13 | 12 | sqrtcld | |- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 14 | 8 13 | addcld | |- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC ) |
| 15 | asinlem | |- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) |
|
| 16 | 14 15 | logcld | |- ( A e. CC -> ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) |
| 17 | 4 6 16 | mulassd | |- ( A e. CC -> ( ( _i x. -u _i ) x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( _i x. ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 18 | 3 3 | mulneg2i | |- ( _i x. -u _i ) = -u ( _i x. _i ) |
| 19 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 20 | 19 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 21 | negneg1e1 | |- -u -u 1 = 1 |
|
| 22 | 18 20 21 | 3eqtri | |- ( _i x. -u _i ) = 1 |
| 23 | 22 | oveq1i | |- ( ( _i x. -u _i ) x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( 1 x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 24 | 16 | mullidd | |- ( A e. CC -> ( 1 x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 25 | 23 24 | eqtrid | |- ( A e. CC -> ( ( _i x. -u _i ) x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 26 | 2 17 25 | 3eqtr2d | |- ( A e. CC -> ( _i x. ( arcsin ` A ) ) = ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 27 | 26 | fveq2d | |- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 28 | eflog | |- ( ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) -> ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
|
| 29 | 14 15 28 | syl2anc | |- ( A e. CC -> ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 30 | 27 29 | eqtrd | |- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |