This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of the argument is zero precisely on the imaginary axis. (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cosargd.1 | |- ( ph -> X e. CC ) |
|
| cosargd.2 | |- ( ph -> X =/= 0 ) |
||
| Assertion | cosarg0d | |- ( ph -> ( ( cos ` ( Im ` ( log ` X ) ) ) = 0 <-> ( Re ` X ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosargd.1 | |- ( ph -> X e. CC ) |
|
| 2 | cosargd.2 | |- ( ph -> X =/= 0 ) |
|
| 3 | 1 2 | cosargd | |- ( ph -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( Re ` X ) / ( abs ` X ) ) ) |
| 4 | 3 | eqeq1d | |- ( ph -> ( ( cos ` ( Im ` ( log ` X ) ) ) = 0 <-> ( ( Re ` X ) / ( abs ` X ) ) = 0 ) ) |
| 5 | 1 | recld | |- ( ph -> ( Re ` X ) e. RR ) |
| 6 | 5 | recnd | |- ( ph -> ( Re ` X ) e. CC ) |
| 7 | 1 | abscld | |- ( ph -> ( abs ` X ) e. RR ) |
| 8 | 7 | recnd | |- ( ph -> ( abs ` X ) e. CC ) |
| 9 | 1 2 | absne0d | |- ( ph -> ( abs ` X ) =/= 0 ) |
| 10 | 6 8 9 | diveq0ad | |- ( ph -> ( ( ( Re ` X ) / ( abs ` X ) ) = 0 <-> ( Re ` X ) = 0 ) ) |
| 11 | 4 10 | bitrd | |- ( ph -> ( ( cos ` ( Im ` ( log ` X ) ) ) = 0 <-> ( Re ` X ) = 0 ) ) |