This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of the argument is the quotient of the real part and the absolute value. Compare to efiarg . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cosargd.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| cosargd.2 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | ||
| Assertion | cosargd | ⊢ ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = ( ( ℜ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosargd.1 | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
| 2 | cosargd.2 | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) | |
| 3 | 1 | cjcld | ⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ℂ ) |
| 4 | 1 3 | addcld | ⊢ ( 𝜑 → ( 𝑋 + ( ∗ ‘ 𝑋 ) ) ∈ ℂ ) |
| 5 | 1 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 7 | 2cnd | ⊢ ( 𝜑 → 2 ∈ ℂ ) | |
| 8 | 1 2 | absne0d | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ≠ 0 ) |
| 9 | 2ne0 | ⊢ 2 ≠ 0 | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → 2 ≠ 0 ) |
| 11 | 4 6 7 8 10 | divdiv32d | ⊢ ( 𝜑 → ( ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / ( abs ‘ 𝑋 ) ) / 2 ) = ( ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / 2 ) / ( abs ‘ 𝑋 ) ) ) |
| 12 | 1 2 | logcld | ⊢ ( 𝜑 → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 13 | 12 | imcld | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ℝ ) |
| 14 | 13 | recnd | ⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ℂ ) |
| 15 | cosval | ⊢ ( ( ℑ ‘ ( log ‘ 𝑋 ) ) ∈ ℂ → ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = ( ( ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) + ( exp ‘ ( - i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) / 2 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = ( ( ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) + ( exp ‘ ( - i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) / 2 ) ) |
| 17 | efiarg | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) = ( 𝑋 / ( abs ‘ 𝑋 ) ) ) | |
| 18 | 1 2 17 | syl2anc | ⊢ ( 𝜑 → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) = ( 𝑋 / ( abs ‘ 𝑋 ) ) ) |
| 19 | ax-icn | ⊢ i ∈ ℂ | |
| 20 | 19 | a1i | ⊢ ( 𝜑 → i ∈ ℂ ) |
| 21 | 20 14 | mulcld | ⊢ ( 𝜑 → ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ∈ ℂ ) |
| 22 | efcj | ⊢ ( ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ∈ ℂ → ( exp ‘ ( ∗ ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) = ( ∗ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → ( exp ‘ ( ∗ ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) = ( ∗ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) ) |
| 24 | 20 14 | cjmuld | ⊢ ( 𝜑 → ( ∗ ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) |
| 25 | cji | ⊢ ( ∗ ‘ i ) = - i | |
| 26 | 25 | a1i | ⊢ ( 𝜑 → ( ∗ ‘ i ) = - i ) |
| 27 | 13 | cjred | ⊢ ( 𝜑 → ( ∗ ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = ( ℑ ‘ ( log ‘ 𝑋 ) ) ) |
| 28 | 26 27 | oveq12d | ⊢ ( 𝜑 → ( ( ∗ ‘ i ) · ( ∗ ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) = ( - i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) |
| 29 | 24 28 | eqtrd | ⊢ ( 𝜑 → ( ∗ ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) = ( - i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) |
| 30 | 29 | fveq2d | ⊢ ( 𝜑 → ( exp ‘ ( ∗ ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) = ( exp ‘ ( - i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) |
| 31 | 18 | fveq2d | ⊢ ( 𝜑 → ( ∗ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) = ( ∗ ‘ ( 𝑋 / ( abs ‘ 𝑋 ) ) ) ) |
| 32 | 23 30 31 | 3eqtr3d | ⊢ ( 𝜑 → ( exp ‘ ( - i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) = ( ∗ ‘ ( 𝑋 / ( abs ‘ 𝑋 ) ) ) ) |
| 33 | 1 6 8 | cjdivd | ⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 / ( abs ‘ 𝑋 ) ) ) = ( ( ∗ ‘ 𝑋 ) / ( ∗ ‘ ( abs ‘ 𝑋 ) ) ) ) |
| 34 | 5 | cjred | ⊢ ( 𝜑 → ( ∗ ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝜑 → ( ( ∗ ‘ 𝑋 ) / ( ∗ ‘ ( abs ‘ 𝑋 ) ) ) = ( ( ∗ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) ) |
| 36 | 32 33 35 | 3eqtrd | ⊢ ( 𝜑 → ( exp ‘ ( - i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) = ( ( ∗ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) ) |
| 37 | 18 36 | oveq12d | ⊢ ( 𝜑 → ( ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) + ( exp ‘ ( - i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) = ( ( 𝑋 / ( abs ‘ 𝑋 ) ) + ( ( ∗ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) ) ) |
| 38 | 1 3 6 8 | divdird | ⊢ ( 𝜑 → ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / ( abs ‘ 𝑋 ) ) = ( ( 𝑋 / ( abs ‘ 𝑋 ) ) + ( ( ∗ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) ) ) |
| 39 | 37 38 | eqtr4d | ⊢ ( 𝜑 → ( ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) + ( exp ‘ ( - i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) = ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / ( abs ‘ 𝑋 ) ) ) |
| 40 | 39 | oveq1d | ⊢ ( 𝜑 → ( ( ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) + ( exp ‘ ( - i · ( ℑ ‘ ( log ‘ 𝑋 ) ) ) ) ) / 2 ) = ( ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / ( abs ‘ 𝑋 ) ) / 2 ) ) |
| 41 | 16 40 | eqtrd | ⊢ ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = ( ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / ( abs ‘ 𝑋 ) ) / 2 ) ) |
| 42 | reval | ⊢ ( 𝑋 ∈ ℂ → ( ℜ ‘ 𝑋 ) = ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / 2 ) ) | |
| 43 | 1 42 | syl | ⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) = ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / 2 ) ) |
| 44 | 43 | oveq1d | ⊢ ( 𝜑 → ( ( ℜ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) = ( ( ( 𝑋 + ( ∗ ‘ 𝑋 ) ) / 2 ) / ( abs ‘ 𝑋 ) ) ) |
| 45 | 11 41 44 | 3eqtr4d | ⊢ ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = ( ( ℜ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) ) |