This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmrp | |- ( ( P e. Prime /\ Q e. Prime ) -> ( ( P gcd Q ) = 1 <-> P =/= Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz | |- ( Q e. Prime -> Q e. ZZ ) |
|
| 2 | coprm | |- ( ( P e. Prime /\ Q e. ZZ ) -> ( -. P || Q <-> ( P gcd Q ) = 1 ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( P e. Prime /\ Q e. Prime ) -> ( -. P || Q <-> ( P gcd Q ) = 1 ) ) |
| 4 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 5 | dvdsprm | |- ( ( P e. ( ZZ>= ` 2 ) /\ Q e. Prime ) -> ( P || Q <-> P = Q ) ) |
|
| 6 | 4 5 | sylan | |- ( ( P e. Prime /\ Q e. Prime ) -> ( P || Q <-> P = Q ) ) |
| 7 | 6 | necon3bbid | |- ( ( P e. Prime /\ Q e. Prime ) -> ( -. P || Q <-> P =/= Q ) ) |
| 8 | 3 7 | bitr3d | |- ( ( P e. Prime /\ Q e. Prime ) -> ( ( P gcd Q ) = 1 <-> P =/= Q ) ) |