This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of ahomomorphism with a function operation. (Contributed by SN, 20-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coof.f | |- ( ph -> F : A --> B ) |
|
| coof.g | |- ( ph -> G : A --> B ) |
||
| coof.h | |- ( ph -> H Fn B ) |
||
| coof.a | |- ( ph -> A e. V ) |
||
| coof.1 | |- ( ( ph /\ ( b e. B /\ c e. B ) ) -> ( b R c ) e. B ) |
||
| coof.2 | |- ( ( ph /\ ( b e. B /\ c e. B ) ) -> ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) |
||
| Assertion | coof | |- ( ph -> ( H o. ( F oF R G ) ) = ( ( H o. F ) oF S ( H o. G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coof.f | |- ( ph -> F : A --> B ) |
|
| 2 | coof.g | |- ( ph -> G : A --> B ) |
|
| 3 | coof.h | |- ( ph -> H Fn B ) |
|
| 4 | coof.a | |- ( ph -> A e. V ) |
|
| 5 | coof.1 | |- ( ( ph /\ ( b e. B /\ c e. B ) ) -> ( b R c ) e. B ) |
|
| 6 | coof.2 | |- ( ( ph /\ ( b e. B /\ c e. B ) ) -> ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) |
|
| 7 | 1 | ffvelcdmda | |- ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) |
| 8 | 2 | ffvelcdmda | |- ( ( ph /\ x e. A ) -> ( G ` x ) e. B ) |
| 9 | 6 | ralrimivva | |- ( ph -> A. b e. B A. c e. B ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) |
| 10 | 9 | adantr | |- ( ( ph /\ x e. A ) -> A. b e. B A. c e. B ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) |
| 11 | fvoveq1 | |- ( b = ( F ` x ) -> ( H ` ( b R c ) ) = ( H ` ( ( F ` x ) R c ) ) ) |
|
| 12 | fveq2 | |- ( b = ( F ` x ) -> ( H ` b ) = ( H ` ( F ` x ) ) ) |
|
| 13 | 12 | oveq1d | |- ( b = ( F ` x ) -> ( ( H ` b ) S ( H ` c ) ) = ( ( H ` ( F ` x ) ) S ( H ` c ) ) ) |
| 14 | 11 13 | eqeq12d | |- ( b = ( F ` x ) -> ( ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) <-> ( H ` ( ( F ` x ) R c ) ) = ( ( H ` ( F ` x ) ) S ( H ` c ) ) ) ) |
| 15 | oveq2 | |- ( c = ( G ` x ) -> ( ( F ` x ) R c ) = ( ( F ` x ) R ( G ` x ) ) ) |
|
| 16 | 15 | fveq2d | |- ( c = ( G ` x ) -> ( H ` ( ( F ` x ) R c ) ) = ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) |
| 17 | fveq2 | |- ( c = ( G ` x ) -> ( H ` c ) = ( H ` ( G ` x ) ) ) |
|
| 18 | 17 | oveq2d | |- ( c = ( G ` x ) -> ( ( H ` ( F ` x ) ) S ( H ` c ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( c = ( G ` x ) -> ( ( H ` ( ( F ` x ) R c ) ) = ( ( H ` ( F ` x ) ) S ( H ` c ) ) <-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) ) |
| 20 | 14 19 | rspc2va | |- ( ( ( ( F ` x ) e. B /\ ( G ` x ) e. B ) /\ A. b e. B A. c e. B ( H ` ( b R c ) ) = ( ( H ` b ) S ( H ` c ) ) ) -> ( H ` ( ( F ` x ) R ( G ` x ) ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) |
| 21 | 7 8 10 20 | syl21anc | |- ( ( ph /\ x e. A ) -> ( H ` ( ( F ` x ) R ( G ` x ) ) ) = ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) |
| 22 | 21 | mpteq2dva | |- ( ph -> ( x e. A |-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) = ( x e. A |-> ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) ) |
| 23 | 1 | ffnd | |- ( ph -> F Fn A ) |
| 24 | 2 | ffnd | |- ( ph -> G Fn A ) |
| 25 | inidm | |- ( A i^i A ) = A |
|
| 26 | eqidd | |- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 27 | eqidd | |- ( ( ph /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
|
| 28 | 23 24 4 4 25 26 27 | offval | |- ( ph -> ( F oF R G ) = ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) |
| 29 | 28 | coeq2d | |- ( ph -> ( H o. ( F oF R G ) ) = ( H o. ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) ) |
| 30 | dffn3 | |- ( H Fn B <-> H : B --> ran H ) |
|
| 31 | 3 30 | sylib | |- ( ph -> H : B --> ran H ) |
| 32 | 7 8 | jca | |- ( ( ph /\ x e. A ) -> ( ( F ` x ) e. B /\ ( G ` x ) e. B ) ) |
| 33 | 5 | caovclg | |- ( ( ph /\ ( ( F ` x ) e. B /\ ( G ` x ) e. B ) ) -> ( ( F ` x ) R ( G ` x ) ) e. B ) |
| 34 | 32 33 | syldan | |- ( ( ph /\ x e. A ) -> ( ( F ` x ) R ( G ` x ) ) e. B ) |
| 35 | 31 34 | cofmpt | |- ( ph -> ( H o. ( x e. A |-> ( ( F ` x ) R ( G ` x ) ) ) ) = ( x e. A |-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) ) |
| 36 | 29 35 | eqtrd | |- ( ph -> ( H o. ( F oF R G ) ) = ( x e. A |-> ( H ` ( ( F ` x ) R ( G ` x ) ) ) ) ) |
| 37 | fnfco | |- ( ( H Fn B /\ F : A --> B ) -> ( H o. F ) Fn A ) |
|
| 38 | 3 1 37 | syl2anc | |- ( ph -> ( H o. F ) Fn A ) |
| 39 | fnfco | |- ( ( H Fn B /\ G : A --> B ) -> ( H o. G ) Fn A ) |
|
| 40 | 3 2 39 | syl2anc | |- ( ph -> ( H o. G ) Fn A ) |
| 41 | fvco2 | |- ( ( F Fn A /\ x e. A ) -> ( ( H o. F ) ` x ) = ( H ` ( F ` x ) ) ) |
|
| 42 | 23 41 | sylan | |- ( ( ph /\ x e. A ) -> ( ( H o. F ) ` x ) = ( H ` ( F ` x ) ) ) |
| 43 | fvco2 | |- ( ( G Fn A /\ x e. A ) -> ( ( H o. G ) ` x ) = ( H ` ( G ` x ) ) ) |
|
| 44 | 24 43 | sylan | |- ( ( ph /\ x e. A ) -> ( ( H o. G ) ` x ) = ( H ` ( G ` x ) ) ) |
| 45 | 38 40 4 4 25 42 44 | offval | |- ( ph -> ( ( H o. F ) oF S ( H o. G ) ) = ( x e. A |-> ( ( H ` ( F ` x ) ) S ( H ` ( G ` x ) ) ) ) ) |
| 46 | 22 36 45 | 3eqtr4d | |- ( ph -> ( H o. ( F oF R G ) ) = ( ( H o. F ) oF S ( H o. G ) ) ) |