This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of ahomomorphism with a function operation. (Contributed by SN, 20-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coof.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| coof.g | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | ||
| coof.h | ⊢ ( 𝜑 → 𝐻 Fn 𝐵 ) | ||
| coof.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| coof.1 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑏 𝑅 𝑐 ) ∈ 𝐵 ) | ||
| coof.2 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) | ||
| Assertion | coof | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ∘f 𝑅 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f 𝑆 ( 𝐻 ∘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coof.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | coof.g | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 3 | coof.h | ⊢ ( 𝜑 → 𝐻 Fn 𝐵 ) | |
| 4 | coof.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | coof.1 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑏 𝑅 𝑐 ) ∈ 𝐵 ) | |
| 6 | coof.2 | ⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) | |
| 7 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 8 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) |
| 9 | 6 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
| 11 | fvoveq1 | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑥 ) → ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) ) ) | |
| 12 | fveq2 | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑥 ) → ( 𝐻 ‘ 𝑏 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 13 | 12 | oveq1d | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑐 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) | |
| 16 | 15 | fveq2d | ⊢ ( 𝑐 = ( 𝐺 ‘ 𝑥 ) → ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) ) = ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑐 = ( 𝐺 ‘ 𝑥 ) → ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑐 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 19 | 16 18 | eqeq12d | ⊢ ( 𝑐 = ( 𝐺 ‘ 𝑥 ) → ( ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 20 | 14 19 | rspc2va | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑏 𝑅 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) 𝑆 ( 𝐻 ‘ 𝑐 ) ) ) → ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 21 | 7 8 10 20 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 22 | 21 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 23 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 24 | 2 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 25 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 26 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 27 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 28 | 23 24 4 4 25 26 27 | offval | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 29 | 28 | coeq2d | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ∘f 𝑅 𝐺 ) ) = ( 𝐻 ∘ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 30 | dffn3 | ⊢ ( 𝐻 Fn 𝐵 ↔ 𝐻 : 𝐵 ⟶ ran 𝐻 ) | |
| 31 | 3 30 | sylib | ⊢ ( 𝜑 → 𝐻 : 𝐵 ⟶ ran 𝐻 ) |
| 32 | 7 8 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 33 | 5 | caovclg | ⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 34 | 32 33 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 35 | 31 34 | cofmpt | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 36 | 29 35 | eqtrd | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ∘f 𝑅 𝐺 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 37 | fnfco | ⊢ ( ( 𝐻 Fn 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐻 ∘ 𝐹 ) Fn 𝐴 ) | |
| 38 | 3 1 37 | syl2anc | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) Fn 𝐴 ) |
| 39 | fnfco | ⊢ ( ( 𝐻 Fn 𝐵 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐻 ∘ 𝐺 ) Fn 𝐴 ) | |
| 40 | 3 2 39 | syl2anc | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐺 ) Fn 𝐴 ) |
| 41 | fvco2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 42 | 23 41 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 43 | fvco2 | ⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) | |
| 44 | 24 43 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐺 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 45 | 38 40 4 4 25 42 44 | offval | ⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ∘f 𝑆 ( 𝐻 ∘ 𝐺 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) 𝑆 ( 𝐻 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) ) |
| 46 | 22 36 45 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ∘f 𝑅 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f 𝑆 ( 𝐻 ∘ 𝐺 ) ) ) |