This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate J is a connected topology . (Contributed by FL, 17-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isconn.1 | |- X = U. J |
|
| Assertion | isconn | |- ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isconn.1 | |- X = U. J |
|
| 2 | id | |- ( j = J -> j = J ) |
|
| 3 | fveq2 | |- ( j = J -> ( Clsd ` j ) = ( Clsd ` J ) ) |
|
| 4 | 2 3 | ineq12d | |- ( j = J -> ( j i^i ( Clsd ` j ) ) = ( J i^i ( Clsd ` J ) ) ) |
| 5 | unieq | |- ( j = J -> U. j = U. J ) |
|
| 6 | 5 1 | eqtr4di | |- ( j = J -> U. j = X ) |
| 7 | 6 | preq2d | |- ( j = J -> { (/) , U. j } = { (/) , X } ) |
| 8 | 4 7 | eqeq12d | |- ( j = J -> ( ( j i^i ( Clsd ` j ) ) = { (/) , U. j } <-> ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |
| 9 | df-conn | |- Conn = { j e. Top | ( j i^i ( Clsd ` j ) ) = { (/) , U. j } } |
|
| 10 | 8 9 | elrab2 | |- ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |