This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only nonempty clopen set of a connected topology is the whole space. (Contributed by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isconn.1 | |- X = U. J |
|
| connclo.1 | |- ( ph -> J e. Conn ) |
||
| connclo.2 | |- ( ph -> A e. J ) |
||
| connclo.3 | |- ( ph -> A =/= (/) ) |
||
| connclo.4 | |- ( ph -> A e. ( Clsd ` J ) ) |
||
| Assertion | connclo | |- ( ph -> A = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isconn.1 | |- X = U. J |
|
| 2 | connclo.1 | |- ( ph -> J e. Conn ) |
|
| 3 | connclo.2 | |- ( ph -> A e. J ) |
|
| 4 | connclo.3 | |- ( ph -> A =/= (/) ) |
|
| 5 | connclo.4 | |- ( ph -> A e. ( Clsd ` J ) ) |
|
| 6 | 4 | neneqd | |- ( ph -> -. A = (/) ) |
| 7 | 3 5 | elind | |- ( ph -> A e. ( J i^i ( Clsd ` J ) ) ) |
| 8 | 1 | isconn | |- ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |
| 9 | 8 | simprbi | |- ( J e. Conn -> ( J i^i ( Clsd ` J ) ) = { (/) , X } ) |
| 10 | 2 9 | syl | |- ( ph -> ( J i^i ( Clsd ` J ) ) = { (/) , X } ) |
| 11 | 7 10 | eleqtrd | |- ( ph -> A e. { (/) , X } ) |
| 12 | elpri | |- ( A e. { (/) , X } -> ( A = (/) \/ A = X ) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( A = (/) \/ A = X ) ) |
| 14 | 13 | ord | |- ( ph -> ( -. A = (/) -> A = X ) ) |
| 15 | 6 14 | mpd | |- ( ph -> A = X ) |