This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conjghm.x | |- X = ( Base ` G ) |
|
| conjghm.p | |- .+ = ( +g ` G ) |
||
| conjghm.m | |- .- = ( -g ` G ) |
||
| conjsubg.f | |- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
||
| Assertion | conjnsg | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X ) -> S = ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x | |- X = ( Base ` G ) |
|
| 2 | conjghm.p | |- .+ = ( +g ` G ) |
|
| 3 | conjghm.m | |- .- = ( -g ` G ) |
|
| 4 | conjsubg.f | |- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
|
| 5 | nsgsubg | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
|
| 6 | eqid | |- { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } = { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } |
|
| 7 | 6 1 2 | isnsg4 | |- ( S e. ( NrmSGrp ` G ) <-> ( S e. ( SubGrp ` G ) /\ { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } = X ) ) |
| 8 | 7 | simprbi | |- ( S e. ( NrmSGrp ` G ) -> { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } = X ) |
| 9 | 8 | eleq2d | |- ( S e. ( NrmSGrp ` G ) -> ( A e. { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } <-> A e. X ) ) |
| 10 | 9 | biimpar | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X ) -> A e. { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } ) |
| 11 | 1 2 3 4 6 | conjnmz | |- ( ( S e. ( SubGrp ` G ) /\ A e. { y e. X | A. z e. X ( ( y .+ z ) e. S <-> ( z .+ y ) e. S ) } ) -> S = ran F ) |
| 12 | 5 10 11 | syl2an2r | |- ( ( S e. ( NrmSGrp ` G ) /\ A e. X ) -> S = ran F ) |