This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of Kreyszig p. 12. (Contributed by NM, 12-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | conjmul | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( 1 / P ) + ( 1 / Q ) ) = 1 <-> ( ( P - 1 ) x. ( Q - 1 ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> P e. CC ) |
|
| 2 | simprl | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> Q e. CC ) |
|
| 3 | reccl | |- ( ( P e. CC /\ P =/= 0 ) -> ( 1 / P ) e. CC ) |
|
| 4 | 3 | adantr | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( 1 / P ) e. CC ) |
| 5 | 1 2 4 | mul32d | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( 1 / P ) ) = ( ( P x. ( 1 / P ) ) x. Q ) ) |
| 6 | recid | |- ( ( P e. CC /\ P =/= 0 ) -> ( P x. ( 1 / P ) ) = 1 ) |
|
| 7 | 6 | oveq1d | |- ( ( P e. CC /\ P =/= 0 ) -> ( ( P x. ( 1 / P ) ) x. Q ) = ( 1 x. Q ) ) |
| 8 | 7 | adantr | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. ( 1 / P ) ) x. Q ) = ( 1 x. Q ) ) |
| 9 | mullid | |- ( Q e. CC -> ( 1 x. Q ) = Q ) |
|
| 10 | 9 | ad2antrl | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( 1 x. Q ) = Q ) |
| 11 | 5 8 10 | 3eqtrd | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( 1 / P ) ) = Q ) |
| 12 | reccl | |- ( ( Q e. CC /\ Q =/= 0 ) -> ( 1 / Q ) e. CC ) |
|
| 13 | 12 | adantl | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( 1 / Q ) e. CC ) |
| 14 | 1 2 13 | mulassd | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( 1 / Q ) ) = ( P x. ( Q x. ( 1 / Q ) ) ) ) |
| 15 | recid | |- ( ( Q e. CC /\ Q =/= 0 ) -> ( Q x. ( 1 / Q ) ) = 1 ) |
|
| 16 | 15 | oveq2d | |- ( ( Q e. CC /\ Q =/= 0 ) -> ( P x. ( Q x. ( 1 / Q ) ) ) = ( P x. 1 ) ) |
| 17 | 16 | adantl | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( P x. ( Q x. ( 1 / Q ) ) ) = ( P x. 1 ) ) |
| 18 | mulrid | |- ( P e. CC -> ( P x. 1 ) = P ) |
|
| 19 | 18 | ad2antrr | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( P x. 1 ) = P ) |
| 20 | 14 17 19 | 3eqtrd | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( 1 / Q ) ) = P ) |
| 21 | 11 20 | oveq12d | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( P x. Q ) x. ( 1 / P ) ) + ( ( P x. Q ) x. ( 1 / Q ) ) ) = ( Q + P ) ) |
| 22 | mulcl | |- ( ( P e. CC /\ Q e. CC ) -> ( P x. Q ) e. CC ) |
|
| 23 | 22 | ad2ant2r | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( P x. Q ) e. CC ) |
| 24 | 23 4 13 | adddid | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( ( ( P x. Q ) x. ( 1 / P ) ) + ( ( P x. Q ) x. ( 1 / Q ) ) ) ) |
| 25 | addcom | |- ( ( P e. CC /\ Q e. CC ) -> ( P + Q ) = ( Q + P ) ) |
|
| 26 | 25 | ad2ant2r | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( P + Q ) = ( Q + P ) ) |
| 27 | 21 24 26 | 3eqtr4d | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( P + Q ) ) |
| 28 | 22 | mulridd | |- ( ( P e. CC /\ Q e. CC ) -> ( ( P x. Q ) x. 1 ) = ( P x. Q ) ) |
| 29 | 28 | ad2ant2r | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P x. Q ) x. 1 ) = ( P x. Q ) ) |
| 30 | 27 29 | eqeq12d | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( ( P x. Q ) x. 1 ) <-> ( P + Q ) = ( P x. Q ) ) ) |
| 31 | addcl | |- ( ( ( 1 / P ) e. CC /\ ( 1 / Q ) e. CC ) -> ( ( 1 / P ) + ( 1 / Q ) ) e. CC ) |
|
| 32 | 3 12 31 | syl2an | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( 1 / P ) + ( 1 / Q ) ) e. CC ) |
| 33 | mulne0 | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( P x. Q ) =/= 0 ) |
|
| 34 | ax-1cn | |- 1 e. CC |
|
| 35 | mulcan | |- ( ( ( ( 1 / P ) + ( 1 / Q ) ) e. CC /\ 1 e. CC /\ ( ( P x. Q ) e. CC /\ ( P x. Q ) =/= 0 ) ) -> ( ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( ( P x. Q ) x. 1 ) <-> ( ( 1 / P ) + ( 1 / Q ) ) = 1 ) ) |
|
| 36 | 34 35 | mp3an2 | |- ( ( ( ( 1 / P ) + ( 1 / Q ) ) e. CC /\ ( ( P x. Q ) e. CC /\ ( P x. Q ) =/= 0 ) ) -> ( ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( ( P x. Q ) x. 1 ) <-> ( ( 1 / P ) + ( 1 / Q ) ) = 1 ) ) |
| 37 | 32 23 33 36 | syl12anc | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( P x. Q ) x. ( ( 1 / P ) + ( 1 / Q ) ) ) = ( ( P x. Q ) x. 1 ) <-> ( ( 1 / P ) + ( 1 / Q ) ) = 1 ) ) |
| 38 | eqcom | |- ( ( P + Q ) = ( P x. Q ) <-> ( P x. Q ) = ( P + Q ) ) |
|
| 39 | muleqadd | |- ( ( P e. CC /\ Q e. CC ) -> ( ( P x. Q ) = ( P + Q ) <-> ( ( P - 1 ) x. ( Q - 1 ) ) = 1 ) ) |
|
| 40 | 38 39 | bitrid | |- ( ( P e. CC /\ Q e. CC ) -> ( ( P + Q ) = ( P x. Q ) <-> ( ( P - 1 ) x. ( Q - 1 ) ) = 1 ) ) |
| 41 | 40 | ad2ant2r | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( P + Q ) = ( P x. Q ) <-> ( ( P - 1 ) x. ( Q - 1 ) ) = 1 ) ) |
| 42 | 30 37 41 | 3bitr3d | |- ( ( ( P e. CC /\ P =/= 0 ) /\ ( Q e. CC /\ Q =/= 0 ) ) -> ( ( ( 1 / P ) + ( 1 / Q ) ) = 1 <-> ( ( P - 1 ) x. ( Q - 1 ) ) = 1 ) ) |