This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two numbers whose reciprocals sum to 1 are called "conjugates" and satisfy this relationship. Equation 5 of Kreyszig p. 12. (Contributed by NM, 12-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | conjmul | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → 𝑃 ∈ ℂ ) | |
| 2 | simprl | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → 𝑄 ∈ ℂ ) | |
| 3 | reccl | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) → ( 1 / 𝑃 ) ∈ ℂ ) | |
| 4 | 3 | adantr | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 1 / 𝑃 ) ∈ ℂ ) |
| 5 | 1 2 4 | mul32d | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) = ( ( 𝑃 · ( 1 / 𝑃 ) ) · 𝑄 ) ) |
| 6 | recid | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) → ( 𝑃 · ( 1 / 𝑃 ) ) = 1 ) | |
| 7 | 6 | oveq1d | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) → ( ( 𝑃 · ( 1 / 𝑃 ) ) · 𝑄 ) = ( 1 · 𝑄 ) ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · ( 1 / 𝑃 ) ) · 𝑄 ) = ( 1 · 𝑄 ) ) |
| 9 | mullid | ⊢ ( 𝑄 ∈ ℂ → ( 1 · 𝑄 ) = 𝑄 ) | |
| 10 | 9 | ad2antrl | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 1 · 𝑄 ) = 𝑄 ) |
| 11 | 5 8 10 | 3eqtrd | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) = 𝑄 ) |
| 12 | reccl | ⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) → ( 1 / 𝑄 ) ∈ ℂ ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 1 / 𝑄 ) ∈ ℂ ) |
| 14 | 1 2 13 | mulassd | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) = ( 𝑃 · ( 𝑄 · ( 1 / 𝑄 ) ) ) ) |
| 15 | recid | ⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) → ( 𝑄 · ( 1 / 𝑄 ) ) = 1 ) | |
| 16 | 15 | oveq2d | ⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) → ( 𝑃 · ( 𝑄 · ( 1 / 𝑄 ) ) ) = ( 𝑃 · 1 ) ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · ( 𝑄 · ( 1 / 𝑄 ) ) ) = ( 𝑃 · 1 ) ) |
| 18 | mulrid | ⊢ ( 𝑃 ∈ ℂ → ( 𝑃 · 1 ) = 𝑃 ) | |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · 1 ) = 𝑃 ) |
| 20 | 14 17 19 | 3eqtrd | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) = 𝑃 ) |
| 21 | 11 20 | oveq12d | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) + ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) ) = ( 𝑄 + 𝑃 ) ) |
| 22 | mulcl | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( 𝑃 · 𝑄 ) ∈ ℂ ) | |
| 23 | 22 | ad2ant2r | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · 𝑄 ) ∈ ℂ ) |
| 24 | 23 4 13 | adddid | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑃 ) ) + ( ( 𝑃 · 𝑄 ) · ( 1 / 𝑄 ) ) ) ) |
| 25 | addcom | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( 𝑃 + 𝑄 ) = ( 𝑄 + 𝑃 ) ) | |
| 26 | 25 | ad2ant2r | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 + 𝑄 ) = ( 𝑄 + 𝑃 ) ) |
| 27 | 21 24 26 | 3eqtr4d | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( 𝑃 + 𝑄 ) ) |
| 28 | 22 | mulridd | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ( 𝑃 · 𝑄 ) · 1 ) = ( 𝑃 · 𝑄 ) ) |
| 29 | 28 | ad2ant2r | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 · 𝑄 ) · 1 ) = ( 𝑃 · 𝑄 ) ) |
| 30 | 27 29 | eqeq12d | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ) ) |
| 31 | addcl | ⊢ ( ( ( 1 / 𝑃 ) ∈ ℂ ∧ ( 1 / 𝑄 ) ∈ ℂ ) → ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ) | |
| 32 | 3 12 31 | syl2an | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ) |
| 33 | mulne0 | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( 𝑃 · 𝑄 ) ≠ 0 ) | |
| 34 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 35 | mulcan | ⊢ ( ( ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( 𝑃 · 𝑄 ) ∈ ℂ ∧ ( 𝑃 · 𝑄 ) ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ) ) | |
| 36 | 34 35 | mp3an2 | ⊢ ( ( ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ∈ ℂ ∧ ( ( 𝑃 · 𝑄 ) ∈ ℂ ∧ ( 𝑃 · 𝑄 ) ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ) ) |
| 37 | 32 23 33 36 | syl12anc | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 𝑃 · 𝑄 ) · ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) ) = ( ( 𝑃 · 𝑄 ) · 1 ) ↔ ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ) ) |
| 38 | eqcom | ⊢ ( ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ↔ ( 𝑃 · 𝑄 ) = ( 𝑃 + 𝑄 ) ) | |
| 39 | muleqadd | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ( 𝑃 · 𝑄 ) = ( 𝑃 + 𝑄 ) ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) | |
| 40 | 38 39 | bitrid | ⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |
| 41 | 40 | ad2ant2r | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( 𝑃 + 𝑄 ) = ( 𝑃 · 𝑄 ) ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |
| 42 | 30 37 41 | 3bitr3d | ⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑄 ∈ ℂ ∧ 𝑄 ≠ 0 ) ) → ( ( ( 1 / 𝑃 ) + ( 1 / 𝑄 ) ) = 1 ↔ ( ( 𝑃 − 1 ) · ( 𝑄 − 1 ) ) = 1 ) ) |