This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of numbers whose product equals their sum. Equation 5 of Kreyszig p. 12. (Contributed by NM, 13-Nov-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muleqadd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) = ( A + B ) <-> ( ( A - 1 ) x. ( B - 1 ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | mulsub | |- ( ( ( A e. CC /\ 1 e. CC ) /\ ( B e. CC /\ 1 e. CC ) ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
|
| 3 | 1 2 | mpanr2 | |- ( ( ( A e. CC /\ 1 e. CC ) /\ B e. CC ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
| 4 | 1 3 | mpanl2 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) ) |
| 5 | 1 | mulridi | |- ( 1 x. 1 ) = 1 |
| 6 | 5 | oveq2i | |- ( ( A x. B ) + ( 1 x. 1 ) ) = ( ( A x. B ) + 1 ) |
| 7 | 6 | a1i | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) + ( 1 x. 1 ) ) = ( ( A x. B ) + 1 ) ) |
| 8 | mulrid | |- ( A e. CC -> ( A x. 1 ) = A ) |
|
| 9 | mulrid | |- ( B e. CC -> ( B x. 1 ) = B ) |
|
| 10 | 8 9 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. 1 ) + ( B x. 1 ) ) = ( A + B ) ) |
| 11 | 7 10 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) + ( 1 x. 1 ) ) - ( ( A x. 1 ) + ( B x. 1 ) ) ) = ( ( ( A x. B ) + 1 ) - ( A + B ) ) ) |
| 12 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 13 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 14 | addsub | |- ( ( ( A x. B ) e. CC /\ 1 e. CC /\ ( A + B ) e. CC ) -> ( ( ( A x. B ) + 1 ) - ( A + B ) ) = ( ( ( A x. B ) - ( A + B ) ) + 1 ) ) |
|
| 15 | 1 14 | mp3an2 | |- ( ( ( A x. B ) e. CC /\ ( A + B ) e. CC ) -> ( ( ( A x. B ) + 1 ) - ( A + B ) ) = ( ( ( A x. B ) - ( A + B ) ) + 1 ) ) |
| 16 | 12 13 15 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) + 1 ) - ( A + B ) ) = ( ( ( A x. B ) - ( A + B ) ) + 1 ) ) |
| 17 | 4 11 16 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - 1 ) x. ( B - 1 ) ) = ( ( ( A x. B ) - ( A + B ) ) + 1 ) ) |
| 18 | 17 | eqeq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A - 1 ) x. ( B - 1 ) ) = 1 <-> ( ( ( A x. B ) - ( A + B ) ) + 1 ) = 1 ) ) |
| 19 | 12 13 | subcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) - ( A + B ) ) e. CC ) |
| 20 | 0cn | |- 0 e. CC |
|
| 21 | addcan2 | |- ( ( ( ( A x. B ) - ( A + B ) ) e. CC /\ 0 e. CC /\ 1 e. CC ) -> ( ( ( ( A x. B ) - ( A + B ) ) + 1 ) = ( 0 + 1 ) <-> ( ( A x. B ) - ( A + B ) ) = 0 ) ) |
|
| 22 | 20 1 21 | mp3an23 | |- ( ( ( A x. B ) - ( A + B ) ) e. CC -> ( ( ( ( A x. B ) - ( A + B ) ) + 1 ) = ( 0 + 1 ) <-> ( ( A x. B ) - ( A + B ) ) = 0 ) ) |
| 23 | 19 22 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A x. B ) - ( A + B ) ) + 1 ) = ( 0 + 1 ) <-> ( ( A x. B ) - ( A + B ) ) = 0 ) ) |
| 24 | 1 | addlidi | |- ( 0 + 1 ) = 1 |
| 25 | 24 | eqeq2i | |- ( ( ( ( A x. B ) - ( A + B ) ) + 1 ) = ( 0 + 1 ) <-> ( ( ( A x. B ) - ( A + B ) ) + 1 ) = 1 ) |
| 26 | 23 25 | bitr3di | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) - ( A + B ) ) = 0 <-> ( ( ( A x. B ) - ( A + B ) ) + 1 ) = 1 ) ) |
| 27 | 12 13 | subeq0ad | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) - ( A + B ) ) = 0 <-> ( A x. B ) = ( A + B ) ) ) |
| 28 | 18 26 27 | 3bitr2rd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) = ( A + B ) <-> ( ( A - 1 ) x. ( B - 1 ) ) = 1 ) ) |