This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a poset is a poset. In the general case (`' R e. PosetRel -> R e. PosetRel ) ` is not true. See cnvpsb for a special case where the property holds. (Contributed by FL, 5-Jan-2009) (Proof shortened by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvps | |- ( R e. PosetRel -> `' R e. PosetRel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' R |
|
| 2 | 1 | a1i | |- ( R e. PosetRel -> Rel `' R ) |
| 3 | cnvco | |- `' ( R o. R ) = ( `' R o. `' R ) |
|
| 4 | pstr2 | |- ( R e. PosetRel -> ( R o. R ) C_ R ) |
|
| 5 | cnvss | |- ( ( R o. R ) C_ R -> `' ( R o. R ) C_ `' R ) |
|
| 6 | 4 5 | syl | |- ( R e. PosetRel -> `' ( R o. R ) C_ `' R ) |
| 7 | 3 6 | eqsstrrid | |- ( R e. PosetRel -> ( `' R o. `' R ) C_ `' R ) |
| 8 | psrel | |- ( R e. PosetRel -> Rel R ) |
|
| 9 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
| 10 | 8 9 | sylib | |- ( R e. PosetRel -> `' `' R = R ) |
| 11 | 10 | ineq2d | |- ( R e. PosetRel -> ( `' R i^i `' `' R ) = ( `' R i^i R ) ) |
| 12 | incom | |- ( `' R i^i R ) = ( R i^i `' R ) |
|
| 13 | 11 12 | eqtrdi | |- ( R e. PosetRel -> ( `' R i^i `' `' R ) = ( R i^i `' R ) ) |
| 14 | psref2 | |- ( R e. PosetRel -> ( R i^i `' R ) = ( _I |` U. U. R ) ) |
|
| 15 | relcnvfld | |- ( Rel R -> U. U. R = U. U. `' R ) |
|
| 16 | 8 15 | syl | |- ( R e. PosetRel -> U. U. R = U. U. `' R ) |
| 17 | 16 | reseq2d | |- ( R e. PosetRel -> ( _I |` U. U. R ) = ( _I |` U. U. `' R ) ) |
| 18 | 13 14 17 | 3eqtrd | |- ( R e. PosetRel -> ( `' R i^i `' `' R ) = ( _I |` U. U. `' R ) ) |
| 19 | cnvexg | |- ( R e. PosetRel -> `' R e. _V ) |
|
| 20 | isps | |- ( `' R e. _V -> ( `' R e. PosetRel <-> ( Rel `' R /\ ( `' R o. `' R ) C_ `' R /\ ( `' R i^i `' `' R ) = ( _I |` U. U. `' R ) ) ) ) |
|
| 21 | 19 20 | syl | |- ( R e. PosetRel -> ( `' R e. PosetRel <-> ( Rel `' R /\ ( `' R o. `' R ) C_ `' R /\ ( `' R i^i `' `' R ) = ( _I |` U. U. `' R ) ) ) ) |
| 22 | 2 7 18 21 | mpbir3and | |- ( R e. PosetRel -> `' R e. PosetRel ) |