This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isps | |- ( R e. A -> ( R e. PosetRel <-> ( Rel R /\ ( R o. R ) C_ R /\ ( R i^i `' R ) = ( _I |` U. U. R ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releq | |- ( r = R -> ( Rel r <-> Rel R ) ) |
|
| 2 | coeq1 | |- ( r = R -> ( r o. r ) = ( R o. r ) ) |
|
| 3 | coeq2 | |- ( r = R -> ( R o. r ) = ( R o. R ) ) |
|
| 4 | 2 3 | eqtrd | |- ( r = R -> ( r o. r ) = ( R o. R ) ) |
| 5 | id | |- ( r = R -> r = R ) |
|
| 6 | 4 5 | sseq12d | |- ( r = R -> ( ( r o. r ) C_ r <-> ( R o. R ) C_ R ) ) |
| 7 | cnveq | |- ( r = R -> `' r = `' R ) |
|
| 8 | 5 7 | ineq12d | |- ( r = R -> ( r i^i `' r ) = ( R i^i `' R ) ) |
| 9 | unieq | |- ( r = R -> U. r = U. R ) |
|
| 10 | 9 | unieqd | |- ( r = R -> U. U. r = U. U. R ) |
| 11 | 10 | reseq2d | |- ( r = R -> ( _I |` U. U. r ) = ( _I |` U. U. R ) ) |
| 12 | 8 11 | eqeq12d | |- ( r = R -> ( ( r i^i `' r ) = ( _I |` U. U. r ) <-> ( R i^i `' R ) = ( _I |` U. U. R ) ) ) |
| 13 | 1 6 12 | 3anbi123d | |- ( r = R -> ( ( Rel r /\ ( r o. r ) C_ r /\ ( r i^i `' r ) = ( _I |` U. U. r ) ) <-> ( Rel R /\ ( R o. R ) C_ R /\ ( R i^i `' R ) = ( _I |` U. U. R ) ) ) ) |
| 14 | df-ps | |- PosetRel = { r | ( Rel r /\ ( r o. r ) C_ r /\ ( r i^i `' r ) = ( _I |` U. U. r ) ) } |
|
| 15 | 13 14 | elab2g | |- ( R e. A -> ( R e. PosetRel <-> ( Rel R /\ ( R o. R ) C_ R /\ ( R i^i `' R ) = ( _I |` U. U. R ) ) ) ) |