This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a poset is a poset. (Contributed by FL, 5-Jan-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvpsb | |- ( Rel R -> ( R e. PosetRel <-> `' R e. PosetRel ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvps | |- ( R e. PosetRel -> `' R e. PosetRel ) |
|
| 2 | cnvps | |- ( `' R e. PosetRel -> `' `' R e. PosetRel ) |
|
| 3 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
| 4 | eleq1 | |- ( `' `' R = R -> ( `' `' R e. PosetRel <-> R e. PosetRel ) ) |
|
| 5 | 4 | biimpd | |- ( `' `' R = R -> ( `' `' R e. PosetRel -> R e. PosetRel ) ) |
| 6 | 3 5 | sylbi | |- ( Rel R -> ( `' `' R e. PosetRel -> R e. PosetRel ) ) |
| 7 | 2 6 | syl5 | |- ( Rel R -> ( `' R e. PosetRel -> R e. PosetRel ) ) |
| 8 | 1 7 | impbid2 | |- ( Rel R -> ( R e. PosetRel <-> `' R e. PosetRel ) ) |