This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a product in a ring. ( mulneg2 analog.) Compared with rngmneg2 , the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringneglmul.b | |- B = ( Base ` R ) |
|
| ringneglmul.t | |- .x. = ( .r ` R ) |
||
| ringneglmul.n | |- N = ( invg ` R ) |
||
| ringneglmul.r | |- ( ph -> R e. Ring ) |
||
| ringneglmul.x | |- ( ph -> X e. B ) |
||
| ringneglmul.y | |- ( ph -> Y e. B ) |
||
| Assertion | ringmneg2 | |- ( ph -> ( X .x. ( N ` Y ) ) = ( N ` ( X .x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneglmul.b | |- B = ( Base ` R ) |
|
| 2 | ringneglmul.t | |- .x. = ( .r ` R ) |
|
| 3 | ringneglmul.n | |- N = ( invg ` R ) |
|
| 4 | ringneglmul.r | |- ( ph -> R e. Ring ) |
|
| 5 | ringneglmul.x | |- ( ph -> X e. B ) |
|
| 6 | ringneglmul.y | |- ( ph -> Y e. B ) |
|
| 7 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 8 | 4 7 | syl | |- ( ph -> R e. Grp ) |
| 9 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 10 | 1 9 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 11 | 4 10 | syl | |- ( ph -> ( 1r ` R ) e. B ) |
| 12 | 1 3 | grpinvcl | |- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( N ` ( 1r ` R ) ) e. B ) |
| 13 | 8 11 12 | syl2anc | |- ( ph -> ( N ` ( 1r ` R ) ) e. B ) |
| 14 | 1 2 | ringass | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ ( N ` ( 1r ` R ) ) e. B ) ) -> ( ( X .x. Y ) .x. ( N ` ( 1r ` R ) ) ) = ( X .x. ( Y .x. ( N ` ( 1r ` R ) ) ) ) ) |
| 15 | 4 5 6 13 14 | syl13anc | |- ( ph -> ( ( X .x. Y ) .x. ( N ` ( 1r ` R ) ) ) = ( X .x. ( Y .x. ( N ` ( 1r ` R ) ) ) ) ) |
| 16 | 1 2 | ringcl | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 17 | 4 5 6 16 | syl3anc | |- ( ph -> ( X .x. Y ) e. B ) |
| 18 | 1 2 9 3 4 17 | ringnegr | |- ( ph -> ( ( X .x. Y ) .x. ( N ` ( 1r ` R ) ) ) = ( N ` ( X .x. Y ) ) ) |
| 19 | 1 2 9 3 4 6 | ringnegr | |- ( ph -> ( Y .x. ( N ` ( 1r ` R ) ) ) = ( N ` Y ) ) |
| 20 | 19 | oveq2d | |- ( ph -> ( X .x. ( Y .x. ( N ` ( 1r ` R ) ) ) ) = ( X .x. ( N ` Y ) ) ) |
| 21 | 15 18 20 | 3eqtr3rd | |- ( ph -> ( X .x. ( N ` Y ) ) = ( N ` ( X .x. Y ) ) ) |