This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by NM, 5-Nov-2006) (Revised by AV, 20-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnlmod.w | ⊢ 𝑊 = ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ℂfld 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) | |
| Assertion | cnstrcvs | ⊢ 𝑊 ∈ ℂVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlmod.w | ⊢ 𝑊 = ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ℂfld 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) | |
| 2 | 1 | cnlmod | ⊢ 𝑊 ∈ LMod |
| 3 | cnfldex | ⊢ ℂfld ∈ V | |
| 4 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 5 | 4 | ressid | ⊢ ( ℂfld ∈ V → ( ℂfld ↾s ℂ ) = ℂfld ) |
| 6 | 3 5 | ax-mp | ⊢ ( ℂfld ↾s ℂ ) = ℂfld |
| 7 | 6 | eqcomi | ⊢ ℂfld = ( ℂfld ↾s ℂ ) |
| 8 | id | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) | |
| 9 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) | |
| 10 | negcl | ⊢ ( 𝑥 ∈ ℂ → - 𝑥 ∈ ℂ ) | |
| 11 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 12 | mulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) | |
| 13 | 8 9 10 11 12 | cnsubrglem | ⊢ ℂ ∈ ( SubRing ‘ ℂfld ) |
| 14 | qdass | ⊢ ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ℂfld 〉 , 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , ℂfld 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) | |
| 15 | 1 14 | eqtri | ⊢ 𝑊 = ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , ℂfld 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 } ) |
| 16 | 15 | lmodsca | ⊢ ( ℂfld ∈ V → ℂfld = ( Scalar ‘ 𝑊 ) ) |
| 17 | 3 16 | ax-mp | ⊢ ℂfld = ( Scalar ‘ 𝑊 ) |
| 18 | 17 | isclmi | ⊢ ( ( 𝑊 ∈ LMod ∧ ℂfld = ( ℂfld ↾s ℂ ) ∧ ℂ ∈ ( SubRing ‘ ℂfld ) ) → 𝑊 ∈ ℂMod ) |
| 19 | 2 7 13 18 | mp3an | ⊢ 𝑊 ∈ ℂMod |
| 20 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 21 | 17 | islvec | ⊢ ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ ℂfld ∈ DivRing ) ) |
| 22 | 2 20 21 | mpbir2an | ⊢ 𝑊 ∈ LVec |
| 23 | 19 22 | elini | ⊢ 𝑊 ∈ ( ℂMod ∩ LVec ) |
| 24 | df-cvs | ⊢ ℂVec = ( ℂMod ∩ LVec ) | |
| 25 | 23 24 | eleqtrri | ⊢ 𝑊 ∈ ℂVec |