This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . F provides an example showing the existence of a continuous linear adjoint. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | |- T e. LinOp |
|
| cnlnadjlem.2 | |- T e. ContOp |
||
| cnlnadjlem.3 | |- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
||
| cnlnadjlem.4 | |- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
||
| cnlnadjlem.5 | |- F = ( y e. ~H |-> B ) |
||
| Assertion | cnlnadjlem9 | |- E. t e. ( LinOp i^i ContOp ) A. x e. ~H A. z e. ~H ( ( T ` x ) .ih z ) = ( x .ih ( t ` z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | |- T e. LinOp |
|
| 2 | cnlnadjlem.2 | |- T e. ContOp |
|
| 3 | cnlnadjlem.3 | |- G = ( g e. ~H |-> ( ( T ` g ) .ih y ) ) |
|
| 4 | cnlnadjlem.4 | |- B = ( iota_ w e. ~H A. v e. ~H ( ( T ` v ) .ih y ) = ( v .ih w ) ) |
|
| 5 | cnlnadjlem.5 | |- F = ( y e. ~H |-> B ) |
|
| 6 | 1 2 3 4 5 | cnlnadjlem6 | |- F e. LinOp |
| 7 | 1 2 3 4 5 | cnlnadjlem8 | |- F e. ContOp |
| 8 | elin | |- ( F e. ( LinOp i^i ContOp ) <-> ( F e. LinOp /\ F e. ContOp ) ) |
|
| 9 | 6 7 8 | mpbir2an | |- F e. ( LinOp i^i ContOp ) |
| 10 | 1 2 3 4 5 | cnlnadjlem5 | |- ( ( z e. ~H /\ x e. ~H ) -> ( ( T ` x ) .ih z ) = ( x .ih ( F ` z ) ) ) |
| 11 | 10 | ancoms | |- ( ( x e. ~H /\ z e. ~H ) -> ( ( T ` x ) .ih z ) = ( x .ih ( F ` z ) ) ) |
| 12 | 11 | rgen2 | |- A. x e. ~H A. z e. ~H ( ( T ` x ) .ih z ) = ( x .ih ( F ` z ) ) |
| 13 | fveq1 | |- ( t = F -> ( t ` z ) = ( F ` z ) ) |
|
| 14 | 13 | oveq2d | |- ( t = F -> ( x .ih ( t ` z ) ) = ( x .ih ( F ` z ) ) ) |
| 15 | 14 | eqeq2d | |- ( t = F -> ( ( ( T ` x ) .ih z ) = ( x .ih ( t ` z ) ) <-> ( ( T ` x ) .ih z ) = ( x .ih ( F ` z ) ) ) ) |
| 16 | 15 | 2ralbidv | |- ( t = F -> ( A. x e. ~H A. z e. ~H ( ( T ` x ) .ih z ) = ( x .ih ( t ` z ) ) <-> A. x e. ~H A. z e. ~H ( ( T ` x ) .ih z ) = ( x .ih ( F ` z ) ) ) ) |
| 17 | 16 | rspcev | |- ( ( F e. ( LinOp i^i ContOp ) /\ A. x e. ~H A. z e. ~H ( ( T ` x ) .ih z ) = ( x .ih ( F ` z ) ) ) -> E. t e. ( LinOp i^i ContOp ) A. x e. ~H A. z e. ~H ( ( T ` x ) .ih z ) = ( x .ih ( t ` z ) ) ) |
| 18 | 9 12 17 | mp2an | |- E. t e. ( LinOp i^i ContOp ) A. x e. ~H A. z e. ~H ( ( T ` x ) .ih z ) = ( x .ih ( t ` z ) ) |