This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 7-Feb-2006) (Proof shortened by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnopcon.1 | |- T e. LinOp |
|
| Assertion | lnopconi | |- ( T e. ContOp <-> E. x e. RR A. y e. ~H ( normh ` ( T ` y ) ) <_ ( x x. ( normh ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopcon.1 | |- T e. LinOp |
|
| 2 | nmcopex | |- ( ( T e. LinOp /\ T e. ContOp ) -> ( normop ` T ) e. RR ) |
|
| 3 | 1 2 | mpan | |- ( T e. ContOp -> ( normop ` T ) e. RR ) |
| 4 | nmcoplb | |- ( ( T e. LinOp /\ T e. ContOp /\ y e. ~H ) -> ( normh ` ( T ` y ) ) <_ ( ( normop ` T ) x. ( normh ` y ) ) ) |
|
| 5 | 1 4 | mp3an1 | |- ( ( T e. ContOp /\ y e. ~H ) -> ( normh ` ( T ` y ) ) <_ ( ( normop ` T ) x. ( normh ` y ) ) ) |
| 6 | 1 | lnopfi | |- T : ~H --> ~H |
| 7 | elcnop | |- ( T e. ContOp <-> ( T : ~H --> ~H /\ A. x e. ~H A. z e. RR+ E. y e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < y -> ( normh ` ( ( T ` w ) -h ( T ` x ) ) ) < z ) ) ) |
|
| 8 | 6 7 | mpbiran | |- ( T e. ContOp <-> A. x e. ~H A. z e. RR+ E. y e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < y -> ( normh ` ( ( T ` w ) -h ( T ` x ) ) ) < z ) ) |
| 9 | 6 | ffvelcdmi | |- ( y e. ~H -> ( T ` y ) e. ~H ) |
| 10 | normcl | |- ( ( T ` y ) e. ~H -> ( normh ` ( T ` y ) ) e. RR ) |
|
| 11 | 9 10 | syl | |- ( y e. ~H -> ( normh ` ( T ` y ) ) e. RR ) |
| 12 | 1 | lnopsubi | |- ( ( w e. ~H /\ x e. ~H ) -> ( T ` ( w -h x ) ) = ( ( T ` w ) -h ( T ` x ) ) ) |
| 13 | 3 5 8 11 12 | lnconi | |- ( T e. ContOp <-> E. x e. RR A. y e. ~H ( normh ` ( T ` y ) ) <_ ( x x. ( normh ` y ) ) ) |