This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity element of complex number addition is zero. See also cnfld0 . (Contributed by Steve Rodriguez, 3-Dec-2006) (Revised by AV, 26-Aug-2021) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnaddabl.g | |- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } |
|
| Assertion | cnaddid | |- ( 0g ` G ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabl.g | |- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } |
|
| 2 | 0cn | |- 0 e. CC |
|
| 3 | cnex | |- CC e. _V |
|
| 4 | 1 | grpbase | |- ( CC e. _V -> CC = ( Base ` G ) ) |
| 5 | 3 4 | ax-mp | |- CC = ( Base ` G ) |
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | addex | |- + e. _V |
|
| 8 | 1 | grpplusg | |- ( + e. _V -> + = ( +g ` G ) ) |
| 9 | 7 8 | ax-mp | |- + = ( +g ` G ) |
| 10 | id | |- ( 0 e. CC -> 0 e. CC ) |
|
| 11 | addlid | |- ( x e. CC -> ( 0 + x ) = x ) |
|
| 12 | 11 | adantl | |- ( ( 0 e. CC /\ x e. CC ) -> ( 0 + x ) = x ) |
| 13 | addrid | |- ( x e. CC -> ( x + 0 ) = x ) |
|
| 14 | 13 | adantl | |- ( ( 0 e. CC /\ x e. CC ) -> ( x + 0 ) = x ) |
| 15 | 5 6 9 10 12 14 | ismgmid2 | |- ( 0 e. CC -> 0 = ( 0g ` G ) ) |
| 16 | 2 15 | ax-mp | |- 0 = ( 0g ` G ) |
| 17 | 16 | eqcomi | |- ( 0g ` G ) = 0 |