This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldms | |- CCfld e. MetSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmet | |- ( abs o. - ) e. ( Met ` CC ) |
|
| 2 | eqid | |- ( MetOpen ` ( abs o. - ) ) = ( MetOpen ` ( abs o. - ) ) |
|
| 3 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 4 | 2 | mopntopon | |- ( ( abs o. - ) e. ( *Met ` CC ) -> ( MetOpen ` ( abs o. - ) ) e. ( TopOn ` CC ) ) |
| 5 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 6 | cnfldtset | |- ( MetOpen ` ( abs o. - ) ) = ( TopSet ` CCfld ) |
|
| 7 | 5 6 | topontopn | |- ( ( MetOpen ` ( abs o. - ) ) e. ( TopOn ` CC ) -> ( MetOpen ` ( abs o. - ) ) = ( TopOpen ` CCfld ) ) |
| 8 | 3 4 7 | mp2b | |- ( MetOpen ` ( abs o. - ) ) = ( TopOpen ` CCfld ) |
| 9 | absf | |- abs : CC --> RR |
|
| 10 | subf | |- - : ( CC X. CC ) --> CC |
|
| 11 | fco | |- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
|
| 12 | 9 10 11 | mp2an | |- ( abs o. - ) : ( CC X. CC ) --> RR |
| 13 | ffn | |- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
|
| 14 | fnresdm | |- ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) |
|
| 15 | 12 13 14 | mp2b | |- ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) |
| 16 | cnfldds | |- ( abs o. - ) = ( dist ` CCfld ) |
|
| 17 | 16 | reseq1i | |- ( ( abs o. - ) |` ( CC X. CC ) ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
| 18 | 15 17 | eqtr3i | |- ( abs o. - ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
| 19 | 8 5 18 | isms2 | |- ( CCfld e. MetSp <-> ( ( abs o. - ) e. ( Met ` CC ) /\ ( MetOpen ` ( abs o. - ) ) = ( MetOpen ` ( abs o. - ) ) ) ) |
| 20 | 1 2 19 | mpbir2an | |- CCfld e. MetSp |