This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnegex2 | |- ( A e. CC -> E. x e. CC ( x + A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | 1 1 | mulcli | |- ( _i x. _i ) e. CC |
| 3 | mulcl | |- ( ( ( _i x. _i ) e. CC /\ A e. CC ) -> ( ( _i x. _i ) x. A ) e. CC ) |
|
| 4 | 2 3 | mpan | |- ( A e. CC -> ( ( _i x. _i ) x. A ) e. CC ) |
| 5 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 6 | 5 | oveq2d | |- ( A e. CC -> ( ( ( _i x. _i ) x. A ) + ( 1 x. A ) ) = ( ( ( _i x. _i ) x. A ) + A ) ) |
| 7 | ax-i2m1 | |- ( ( _i x. _i ) + 1 ) = 0 |
|
| 8 | 7 | oveq1i | |- ( ( ( _i x. _i ) + 1 ) x. A ) = ( 0 x. A ) |
| 9 | ax-1cn | |- 1 e. CC |
|
| 10 | adddir | |- ( ( ( _i x. _i ) e. CC /\ 1 e. CC /\ A e. CC ) -> ( ( ( _i x. _i ) + 1 ) x. A ) = ( ( ( _i x. _i ) x. A ) + ( 1 x. A ) ) ) |
|
| 11 | 2 9 10 | mp3an12 | |- ( A e. CC -> ( ( ( _i x. _i ) + 1 ) x. A ) = ( ( ( _i x. _i ) x. A ) + ( 1 x. A ) ) ) |
| 12 | mul02 | |- ( A e. CC -> ( 0 x. A ) = 0 ) |
|
| 13 | 8 11 12 | 3eqtr3a | |- ( A e. CC -> ( ( ( _i x. _i ) x. A ) + ( 1 x. A ) ) = 0 ) |
| 14 | 6 13 | eqtr3d | |- ( A e. CC -> ( ( ( _i x. _i ) x. A ) + A ) = 0 ) |
| 15 | oveq1 | |- ( x = ( ( _i x. _i ) x. A ) -> ( x + A ) = ( ( ( _i x. _i ) x. A ) + A ) ) |
|
| 16 | 15 | eqeq1d | |- ( x = ( ( _i x. _i ) x. A ) -> ( ( x + A ) = 0 <-> ( ( ( _i x. _i ) x. A ) + A ) = 0 ) ) |
| 17 | 16 | rspcev | |- ( ( ( ( _i x. _i ) x. A ) e. CC /\ ( ( ( _i x. _i ) x. A ) + A ) = 0 ) -> E. x e. CC ( x + A ) = 0 ) |
| 18 | 4 14 17 | syl2anc | |- ( A e. CC -> E. x e. CC ( x + A ) = 0 ) |