This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate J is a connected topology . (Contributed by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isconn.1 | |- X = U. J |
|
| Assertion | isconn2 | |- ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) C_ { (/) , X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isconn.1 | |- X = U. J |
|
| 2 | 1 | isconn | |- ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |
| 3 | eqss | |- ( ( J i^i ( Clsd ` J ) ) = { (/) , X } <-> ( ( J i^i ( Clsd ` J ) ) C_ { (/) , X } /\ { (/) , X } C_ ( J i^i ( Clsd ` J ) ) ) ) |
|
| 4 | 0opn | |- ( J e. Top -> (/) e. J ) |
|
| 5 | 0cld | |- ( J e. Top -> (/) e. ( Clsd ` J ) ) |
|
| 6 | 4 5 | elind | |- ( J e. Top -> (/) e. ( J i^i ( Clsd ` J ) ) ) |
| 7 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 8 | 1 | topcld | |- ( J e. Top -> X e. ( Clsd ` J ) ) |
| 9 | 7 8 | elind | |- ( J e. Top -> X e. ( J i^i ( Clsd ` J ) ) ) |
| 10 | 6 9 | prssd | |- ( J e. Top -> { (/) , X } C_ ( J i^i ( Clsd ` J ) ) ) |
| 11 | 10 | biantrud | |- ( J e. Top -> ( ( J i^i ( Clsd ` J ) ) C_ { (/) , X } <-> ( ( J i^i ( Clsd ` J ) ) C_ { (/) , X } /\ { (/) , X } C_ ( J i^i ( Clsd ` J ) ) ) ) ) |
| 12 | 3 11 | bitr4id | |- ( J e. Top -> ( ( J i^i ( Clsd ` J ) ) = { (/) , X } <-> ( J i^i ( Clsd ` J ) ) C_ { (/) , X } ) ) |
| 13 | 12 | pm5.32i | |- ( ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) C_ { (/) , X } ) ) |
| 14 | 2 13 | bitri | |- ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) C_ { (/) , X } ) ) |