This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnblcld.1 | |- D = ( abs o. - ) |
|
| Assertion | cnblcld | |- ( R e. RR* -> ( `' abs " ( 0 [,] R ) ) = { x e. CC | ( 0 D x ) <_ R } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnblcld.1 | |- D = ( abs o. - ) |
|
| 2 | absf | |- abs : CC --> RR |
|
| 3 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
| 4 | elpreima | |- ( abs Fn CC -> ( x e. ( `' abs " ( 0 [,] R ) ) <-> ( x e. CC /\ ( abs ` x ) e. ( 0 [,] R ) ) ) ) |
|
| 5 | 2 3 4 | mp2b | |- ( x e. ( `' abs " ( 0 [,] R ) ) <-> ( x e. CC /\ ( abs ` x ) e. ( 0 [,] R ) ) ) |
| 6 | df-3an | |- ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) <-> ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) /\ ( abs ` x ) <_ R ) ) |
|
| 7 | abscl | |- ( x e. CC -> ( abs ` x ) e. RR ) |
|
| 8 | 7 | rexrd | |- ( x e. CC -> ( abs ` x ) e. RR* ) |
| 9 | absge0 | |- ( x e. CC -> 0 <_ ( abs ` x ) ) |
|
| 10 | 8 9 | jca | |- ( x e. CC -> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) ) |
| 11 | 10 | adantl | |- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) ) |
| 12 | 11 | biantrurd | |- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) <_ R <-> ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) ) /\ ( abs ` x ) <_ R ) ) ) |
| 13 | 6 12 | bitr4id | |- ( ( R e. RR* /\ x e. CC ) -> ( ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) <-> ( abs ` x ) <_ R ) ) |
| 14 | 0xr | |- 0 e. RR* |
|
| 15 | simpl | |- ( ( R e. RR* /\ x e. CC ) -> R e. RR* ) |
|
| 16 | elicc1 | |- ( ( 0 e. RR* /\ R e. RR* ) -> ( ( abs ` x ) e. ( 0 [,] R ) <-> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) ) ) |
|
| 17 | 14 15 16 | sylancr | |- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. ( 0 [,] R ) <-> ( ( abs ` x ) e. RR* /\ 0 <_ ( abs ` x ) /\ ( abs ` x ) <_ R ) ) ) |
| 18 | 0cn | |- 0 e. CC |
|
| 19 | 1 | cnmetdval | |- ( ( 0 e. CC /\ x e. CC ) -> ( 0 D x ) = ( abs ` ( 0 - x ) ) ) |
| 20 | abssub | |- ( ( 0 e. CC /\ x e. CC ) -> ( abs ` ( 0 - x ) ) = ( abs ` ( x - 0 ) ) ) |
|
| 21 | 19 20 | eqtrd | |- ( ( 0 e. CC /\ x e. CC ) -> ( 0 D x ) = ( abs ` ( x - 0 ) ) ) |
| 22 | 18 21 | mpan | |- ( x e. CC -> ( 0 D x ) = ( abs ` ( x - 0 ) ) ) |
| 23 | subid1 | |- ( x e. CC -> ( x - 0 ) = x ) |
|
| 24 | 23 | fveq2d | |- ( x e. CC -> ( abs ` ( x - 0 ) ) = ( abs ` x ) ) |
| 25 | 22 24 | eqtrd | |- ( x e. CC -> ( 0 D x ) = ( abs ` x ) ) |
| 26 | 25 | adantl | |- ( ( R e. RR* /\ x e. CC ) -> ( 0 D x ) = ( abs ` x ) ) |
| 27 | 26 | breq1d | |- ( ( R e. RR* /\ x e. CC ) -> ( ( 0 D x ) <_ R <-> ( abs ` x ) <_ R ) ) |
| 28 | 13 17 27 | 3bitr4d | |- ( ( R e. RR* /\ x e. CC ) -> ( ( abs ` x ) e. ( 0 [,] R ) <-> ( 0 D x ) <_ R ) ) |
| 29 | 28 | pm5.32da | |- ( R e. RR* -> ( ( x e. CC /\ ( abs ` x ) e. ( 0 [,] R ) ) <-> ( x e. CC /\ ( 0 D x ) <_ R ) ) ) |
| 30 | 5 29 | bitrid | |- ( R e. RR* -> ( x e. ( `' abs " ( 0 [,] R ) ) <-> ( x e. CC /\ ( 0 D x ) <_ R ) ) ) |
| 31 | 30 | eqabdv | |- ( R e. RR* -> ( `' abs " ( 0 [,] R ) ) = { x | ( x e. CC /\ ( 0 D x ) <_ R ) } ) |
| 32 | df-rab | |- { x e. CC | ( 0 D x ) <_ R } = { x | ( x e. CC /\ ( 0 D x ) <_ R ) } |
|
| 33 | 31 32 | eqtr4di | |- ( R e. RR* -> ( `' abs " ( 0 [,] R ) ) = { x e. CC | ( 0 D x ) <_ R } ) |