This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers are an Abelian group under addition. This version of cnaddablx hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how Base and +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring . (Contributed by NM, 20-Oct-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnaddabl.g | |- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } |
|
| Assertion | cnaddabl | |- G e. Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnaddabl.g | |- G = { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. } |
|
| 2 | cnex | |- CC e. _V |
|
| 3 | 1 | grpbase | |- ( CC e. _V -> CC = ( Base ` G ) ) |
| 4 | 2 3 | ax-mp | |- CC = ( Base ` G ) |
| 5 | addex | |- + e. _V |
|
| 6 | 1 | grpplusg | |- ( + e. _V -> + = ( +g ` G ) ) |
| 7 | 5 6 | ax-mp | |- + = ( +g ` G ) |
| 8 | addcl | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) e. CC ) |
|
| 9 | addass | |- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
|
| 10 | 0cn | |- 0 e. CC |
|
| 11 | addlid | |- ( x e. CC -> ( 0 + x ) = x ) |
|
| 12 | negcl | |- ( x e. CC -> -u x e. CC ) |
|
| 13 | addcom | |- ( ( x e. CC /\ -u x e. CC ) -> ( x + -u x ) = ( -u x + x ) ) |
|
| 14 | 12 13 | mpdan | |- ( x e. CC -> ( x + -u x ) = ( -u x + x ) ) |
| 15 | negid | |- ( x e. CC -> ( x + -u x ) = 0 ) |
|
| 16 | 14 15 | eqtr3d | |- ( x e. CC -> ( -u x + x ) = 0 ) |
| 17 | 4 7 8 9 10 11 12 16 | isgrpi | |- G e. Grp |
| 18 | addcom | |- ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) ) |
|
| 19 | 17 4 7 18 | isabli | |- G e. Abel |