This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powers of _i belong to the scalar subring of a subcomplex module if _i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmodscexp.f | |- F = ( Scalar ` W ) |
|
| cmodscexp.k | |- K = ( Base ` F ) |
||
| Assertion | cmodscexp | |- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( _i ^ N ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmodscexp.f | |- F = ( Scalar ` W ) |
|
| 2 | cmodscexp.k | |- K = ( Base ` F ) |
|
| 3 | ax-icn | |- _i e. CC |
|
| 4 | 3 | a1i | |- ( ( W e. CMod /\ _i e. K ) -> _i e. CC ) |
| 5 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 6 | cnfldexp | |- ( ( _i e. CC /\ N e. NN0 ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) = ( _i ^ N ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) = ( _i ^ N ) ) |
| 8 | 1 2 | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) |
| 9 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 10 | 9 | subrgsubm | |- ( K e. ( SubRing ` CCfld ) -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 11 | 8 10 | syl | |- ( W e. CMod -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 12 | 11 | ad2antrr | |- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| 13 | 5 | adantl | |- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> N e. NN0 ) |
| 14 | simplr | |- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> _i e. K ) |
|
| 15 | eqid | |- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
|
| 16 | 15 | submmulgcl | |- ( ( K e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ N e. NN0 /\ _i e. K ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) e. K ) |
| 17 | 12 13 14 16 | syl3anc | |- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) e. K ) |
| 18 | 7 17 | eqeltrrd | |- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( _i ^ N ) e. K ) |