This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powers of _i belong to the scalar subring of a subcomplex module if _i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmodscexp.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cmodscexp.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cmodscexp | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( i ↑ 𝑁 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmodscexp.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cmodscexp.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | 3 | a1i | ⊢ ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) → i ∈ ℂ ) |
| 5 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 6 | cnfldexp | ⊢ ( ( i ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) = ( i ↑ 𝑁 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) = ( i ↑ 𝑁 ) ) |
| 8 | 1 2 | clmsubrg | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 9 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 10 | 9 | subrgsubm | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 13 | 5 | adantl | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 14 | simplr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → i ∈ 𝐾 ) | |
| 15 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) | |
| 16 | 15 | submmulgcl | ⊢ ( ( 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ 𝑁 ∈ ℕ0 ∧ i ∈ 𝐾 ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) ∈ 𝐾 ) |
| 17 | 12 13 14 16 | syl3anc | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) ∈ 𝐾 ) |
| 18 | 7 17 | eqeltrrd | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( i ↑ 𝑁 ) ∈ 𝐾 ) |