This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product of a vector with powers of _i belongs to the base set of a subcomplex module if the scalar subring of th subcomplex module contains _i . (Contributed by AV, 18-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmodscexp.f | |- F = ( Scalar ` W ) |
|
| cmodscexp.k | |- K = ( Base ` F ) |
||
| cmodscmulexp.x | |- X = ( Base ` W ) |
||
| cmodscmulexp.s | |- .x. = ( .s ` W ) |
||
| Assertion | cmodscmulexp | |- ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> ( ( _i ^ N ) .x. B ) e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmodscexp.f | |- F = ( Scalar ` W ) |
|
| 2 | cmodscexp.k | |- K = ( Base ` F ) |
|
| 3 | cmodscmulexp.x | |- X = ( Base ` W ) |
|
| 4 | cmodscmulexp.s | |- .x. = ( .s ` W ) |
|
| 5 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 6 | 5 | adantr | |- ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> W e. LMod ) |
| 7 | simp1 | |- ( ( _i e. K /\ B e. X /\ N e. NN ) -> _i e. K ) |
|
| 8 | 7 | anim2i | |- ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> ( W e. CMod /\ _i e. K ) ) |
| 9 | simpr3 | |- ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> N e. NN ) |
|
| 10 | 1 2 | cmodscexp | |- ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( _i ^ N ) e. K ) |
| 11 | 8 9 10 | syl2anc | |- ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> ( _i ^ N ) e. K ) |
| 12 | simpr2 | |- ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> B e. X ) |
|
| 13 | 3 1 4 2 | lmodvscl | |- ( ( W e. LMod /\ ( _i ^ N ) e. K /\ B e. X ) -> ( ( _i ^ N ) .x. B ) e. X ) |
| 14 | 6 11 12 13 | syl3anc | |- ( ( W e. CMod /\ ( _i e. K /\ B e. X /\ N e. NN ) ) -> ( ( _i ^ N ) .x. B ) e. X ) |