This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for clwwlkf1o : F is an onto function. (Contributed by Alexander van der Vekens, 29-Sep-2018) (Revised by AV, 26-Apr-2021) (Revised by AV, 1-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clwwlkf1o.d | |- D = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |
|
| clwwlkf1o.f | |- F = ( t e. D |-> ( t prefix N ) ) |
||
| Assertion | clwwlkfo | |- ( N e. NN -> F : D -onto-> ( N ClWWalksN G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkf1o.d | |- D = { w e. ( N WWalksN G ) | ( lastS ` w ) = ( w ` 0 ) } |
|
| 2 | clwwlkf1o.f | |- F = ( t e. D |-> ( t prefix N ) ) |
|
| 3 | 1 2 | clwwlkf | |- ( N e. NN -> F : D --> ( N ClWWalksN G ) ) |
| 4 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 5 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 6 | 4 5 | clwwlknp | |- ( p e. ( N ClWWalksN G ) -> ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) ) |
| 7 | simpr | |- ( ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) /\ N e. NN ) -> N e. NN ) |
|
| 8 | simpl1 | |- ( ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) /\ N e. NN ) -> ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) ) |
|
| 9 | 3simpc | |- ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) ) |
|
| 10 | 9 | adantr | |- ( ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) /\ N e. NN ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) ) |
| 11 | 1 | clwwlkel | |- ( ( N e. NN /\ ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) ) -> ( p ++ <" ( p ` 0 ) "> ) e. D ) |
| 12 | 7 8 10 11 | syl3anc | |- ( ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) /\ N e. NN ) -> ( p ++ <" ( p ` 0 ) "> ) e. D ) |
| 13 | oveq2 | |- ( N = ( # ` p ) -> ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) = ( ( p ++ <" ( p ` 0 ) "> ) prefix ( # ` p ) ) ) |
|
| 14 | 13 | eqcoms | |- ( ( # ` p ) = N -> ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) = ( ( p ++ <" ( p ` 0 ) "> ) prefix ( # ` p ) ) ) |
| 15 | 14 | adantl | |- ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) -> ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) = ( ( p ++ <" ( p ` 0 ) "> ) prefix ( # ` p ) ) ) |
| 16 | 15 | 3ad2ant1 | |- ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) -> ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) = ( ( p ++ <" ( p ` 0 ) "> ) prefix ( # ` p ) ) ) |
| 17 | 16 | adantr | |- ( ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) /\ N e. NN ) -> ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) = ( ( p ++ <" ( p ` 0 ) "> ) prefix ( # ` p ) ) ) |
| 18 | simpll | |- ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ N e. NN ) -> p e. Word ( Vtx ` G ) ) |
|
| 19 | fstwrdne0 | |- ( ( N e. NN /\ ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) ) -> ( p ` 0 ) e. ( Vtx ` G ) ) |
|
| 20 | 19 | ancoms | |- ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ N e. NN ) -> ( p ` 0 ) e. ( Vtx ` G ) ) |
| 21 | 20 | s1cld | |- ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ N e. NN ) -> <" ( p ` 0 ) "> e. Word ( Vtx ` G ) ) |
| 22 | 18 21 | jca | |- ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ N e. NN ) -> ( p e. Word ( Vtx ` G ) /\ <" ( p ` 0 ) "> e. Word ( Vtx ` G ) ) ) |
| 23 | 22 | 3ad2antl1 | |- ( ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) /\ N e. NN ) -> ( p e. Word ( Vtx ` G ) /\ <" ( p ` 0 ) "> e. Word ( Vtx ` G ) ) ) |
| 24 | pfxccat1 | |- ( ( p e. Word ( Vtx ` G ) /\ <" ( p ` 0 ) "> e. Word ( Vtx ` G ) ) -> ( ( p ++ <" ( p ` 0 ) "> ) prefix ( # ` p ) ) = p ) |
|
| 25 | 23 24 | syl | |- ( ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) /\ N e. NN ) -> ( ( p ++ <" ( p ` 0 ) "> ) prefix ( # ` p ) ) = p ) |
| 26 | 17 25 | eqtr2d | |- ( ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) /\ N e. NN ) -> p = ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) ) |
| 27 | 12 26 | jca | |- ( ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) /\ N e. NN ) -> ( ( p ++ <" ( p ` 0 ) "> ) e. D /\ p = ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) ) ) |
| 28 | 27 | ex | |- ( ( ( p e. Word ( Vtx ` G ) /\ ( # ` p ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( p ` i ) , ( p ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` p ) , ( p ` 0 ) } e. ( Edg ` G ) ) -> ( N e. NN -> ( ( p ++ <" ( p ` 0 ) "> ) e. D /\ p = ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) ) ) ) |
| 29 | 6 28 | syl | |- ( p e. ( N ClWWalksN G ) -> ( N e. NN -> ( ( p ++ <" ( p ` 0 ) "> ) e. D /\ p = ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) ) ) ) |
| 30 | 29 | impcom | |- ( ( N e. NN /\ p e. ( N ClWWalksN G ) ) -> ( ( p ++ <" ( p ` 0 ) "> ) e. D /\ p = ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) ) ) |
| 31 | oveq1 | |- ( x = ( p ++ <" ( p ` 0 ) "> ) -> ( x prefix N ) = ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) ) |
|
| 32 | 31 | rspceeqv | |- ( ( ( p ++ <" ( p ` 0 ) "> ) e. D /\ p = ( ( p ++ <" ( p ` 0 ) "> ) prefix N ) ) -> E. x e. D p = ( x prefix N ) ) |
| 33 | 30 32 | syl | |- ( ( N e. NN /\ p e. ( N ClWWalksN G ) ) -> E. x e. D p = ( x prefix N ) ) |
| 34 | 1 2 | clwwlkfv | |- ( x e. D -> ( F ` x ) = ( x prefix N ) ) |
| 35 | 34 | eqeq2d | |- ( x e. D -> ( p = ( F ` x ) <-> p = ( x prefix N ) ) ) |
| 36 | 35 | adantl | |- ( ( ( N e. NN /\ p e. ( N ClWWalksN G ) ) /\ x e. D ) -> ( p = ( F ` x ) <-> p = ( x prefix N ) ) ) |
| 37 | 36 | rexbidva | |- ( ( N e. NN /\ p e. ( N ClWWalksN G ) ) -> ( E. x e. D p = ( F ` x ) <-> E. x e. D p = ( x prefix N ) ) ) |
| 38 | 33 37 | mpbird | |- ( ( N e. NN /\ p e. ( N ClWWalksN G ) ) -> E. x e. D p = ( F ` x ) ) |
| 39 | 38 | ralrimiva | |- ( N e. NN -> A. p e. ( N ClWWalksN G ) E. x e. D p = ( F ` x ) ) |
| 40 | dffo3 | |- ( F : D -onto-> ( N ClWWalksN G ) <-> ( F : D --> ( N ClWWalksN G ) /\ A. p e. ( N ClWWalksN G ) E. x e. D p = ( F ` x ) ) ) |
|
| 41 | 3 39 40 | sylanbrc | |- ( N e. NN -> F : D -onto-> ( N ClWWalksN G ) ) |