This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a prefix operation. (Contributed by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxval | |- ( ( S e. V /\ L e. NN0 ) -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pfx | |- prefix = ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) ) |
|
| 2 | 1 | a1i | |- ( ( S e. V /\ L e. NN0 ) -> prefix = ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) ) ) |
| 3 | simpl | |- ( ( s = S /\ l = L ) -> s = S ) |
|
| 4 | opeq2 | |- ( l = L -> <. 0 , l >. = <. 0 , L >. ) |
|
| 5 | 4 | adantl | |- ( ( s = S /\ l = L ) -> <. 0 , l >. = <. 0 , L >. ) |
| 6 | 3 5 | oveq12d | |- ( ( s = S /\ l = L ) -> ( s substr <. 0 , l >. ) = ( S substr <. 0 , L >. ) ) |
| 7 | 6 | adantl | |- ( ( ( S e. V /\ L e. NN0 ) /\ ( s = S /\ l = L ) ) -> ( s substr <. 0 , l >. ) = ( S substr <. 0 , L >. ) ) |
| 8 | elex | |- ( S e. V -> S e. _V ) |
|
| 9 | 8 | adantr | |- ( ( S e. V /\ L e. NN0 ) -> S e. _V ) |
| 10 | simpr | |- ( ( S e. V /\ L e. NN0 ) -> L e. NN0 ) |
|
| 11 | ovexd | |- ( ( S e. V /\ L e. NN0 ) -> ( S substr <. 0 , L >. ) e. _V ) |
|
| 12 | 2 7 9 10 11 | ovmpod | |- ( ( S e. V /\ L e. NN0 ) -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) |