This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018) (Revised by AV, 4-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ge2m1nn | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( N e. NN0 /\ 2 <_ N ) -> N e. NN0 ) |
|
| 2 | 1red | |- ( N e. NN0 -> 1 e. RR ) |
|
| 3 | 2re | |- 2 e. RR |
|
| 4 | 3 | a1i | |- ( N e. NN0 -> 2 e. RR ) |
| 5 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 6 | 2 4 5 | 3jca | |- ( N e. NN0 -> ( 1 e. RR /\ 2 e. RR /\ N e. RR ) ) |
| 7 | 6 | adantr | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( 1 e. RR /\ 2 e. RR /\ N e. RR ) ) |
| 8 | simpr | |- ( ( N e. NN0 /\ 2 <_ N ) -> 2 <_ N ) |
|
| 9 | 1lt2 | |- 1 < 2 |
|
| 10 | 8 9 | jctil | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( 1 < 2 /\ 2 <_ N ) ) |
| 11 | ltleletr | |- ( ( 1 e. RR /\ 2 e. RR /\ N e. RR ) -> ( ( 1 < 2 /\ 2 <_ N ) -> 1 <_ N ) ) |
|
| 12 | 7 10 11 | sylc | |- ( ( N e. NN0 /\ 2 <_ N ) -> 1 <_ N ) |
| 13 | elnnnn0c | |- ( N e. NN <-> ( N e. NN0 /\ 1 <_ N ) ) |
|
| 14 | 1 12 13 | sylanbrc | |- ( ( N e. NN0 /\ 2 <_ N ) -> N e. NN ) |
| 15 | nn1m1nn | |- ( N e. NN -> ( N = 1 \/ ( N - 1 ) e. NN ) ) |
|
| 16 | 14 15 | syl | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( N = 1 \/ ( N - 1 ) e. NN ) ) |
| 17 | breq2 | |- ( N = 1 -> ( 2 <_ N <-> 2 <_ 1 ) ) |
|
| 18 | 1re | |- 1 e. RR |
|
| 19 | 18 3 | ltnlei | |- ( 1 < 2 <-> -. 2 <_ 1 ) |
| 20 | pm2.21 | |- ( -. 2 <_ 1 -> ( 2 <_ 1 -> ( N - 1 ) e. NN ) ) |
|
| 21 | 19 20 | sylbi | |- ( 1 < 2 -> ( 2 <_ 1 -> ( N - 1 ) e. NN ) ) |
| 22 | 9 21 | ax-mp | |- ( 2 <_ 1 -> ( N - 1 ) e. NN ) |
| 23 | 17 22 | biimtrdi | |- ( N = 1 -> ( 2 <_ N -> ( N - 1 ) e. NN ) ) |
| 24 | 23 | adantld | |- ( N = 1 -> ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN ) ) |
| 25 | ax-1 | |- ( ( N - 1 ) e. NN -> ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN ) ) |
|
| 26 | 24 25 | jaoi | |- ( ( N = 1 \/ ( N - 1 ) e. NN ) -> ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN ) ) |
| 27 | 16 26 | mpcom | |- ( ( N e. NN0 /\ 2 <_ N ) -> ( N - 1 ) e. NN ) |