This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for clwlkclwwlk . (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 11-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwlkclwwlklem3 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( E. f ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> E : dom E -1-1-> R ) |
|
| 2 | simp1 | |- ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> f e. Word dom E ) |
|
| 3 | 2 | adantr | |- ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> f e. Word dom E ) |
| 4 | 1 3 | anim12i | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( E : dom E -1-1-> R /\ f e. Word dom E ) ) |
| 5 | simp3 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> 2 <_ ( # ` P ) ) |
|
| 6 | simpl2 | |- ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> P : ( 0 ... ( # ` f ) ) --> V ) |
|
| 7 | 5 6 | anim12ci | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( P : ( 0 ... ( # ` f ) ) --> V /\ 2 <_ ( # ` P ) ) ) |
| 8 | simp3 | |- ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
|
| 9 | 8 | anim1i | |- ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) |
| 10 | 9 | adantl | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) |
| 11 | clwlkclwwlklem2 | |- ( ( ( E : dom E -1-1-> R /\ f e. Word dom E ) /\ ( P : ( 0 ... ( # ` f ) ) --> V /\ 2 <_ ( # ` P ) ) /\ ( A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) |
|
| 12 | 4 7 10 11 | syl3anc | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) |
| 13 | lencl | |- ( P e. Word V -> ( # ` P ) e. NN0 ) |
|
| 14 | lencl | |- ( f e. Word dom E -> ( # ` f ) e. NN0 ) |
|
| 15 | ffz0hash | |- ( ( ( # ` f ) e. NN0 /\ P : ( 0 ... ( # ` f ) ) --> V ) -> ( # ` P ) = ( ( # ` f ) + 1 ) ) |
|
| 16 | oveq1 | |- ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( # ` P ) - 1 ) = ( ( ( # ` f ) + 1 ) - 1 ) ) |
|
| 17 | 16 | oveq1d | |- ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( ( # ` P ) - 1 ) - 0 ) = ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) ) |
| 18 | nn0cn | |- ( ( # ` f ) e. NN0 -> ( # ` f ) e. CC ) |
|
| 19 | peano2cn | |- ( ( # ` f ) e. CC -> ( ( # ` f ) + 1 ) e. CC ) |
|
| 20 | peano2cnm | |- ( ( ( # ` f ) + 1 ) e. CC -> ( ( ( # ` f ) + 1 ) - 1 ) e. CC ) |
|
| 21 | 18 19 20 | 3syl | |- ( ( # ` f ) e. NN0 -> ( ( ( # ` f ) + 1 ) - 1 ) e. CC ) |
| 22 | 21 | subid1d | |- ( ( # ` f ) e. NN0 -> ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) = ( ( ( # ` f ) + 1 ) - 1 ) ) |
| 23 | 1cnd | |- ( ( # ` f ) e. NN0 -> 1 e. CC ) |
|
| 24 | 18 23 | pncand | |- ( ( # ` f ) e. NN0 -> ( ( ( # ` f ) + 1 ) - 1 ) = ( # ` f ) ) |
| 25 | 22 24 | eqtrd | |- ( ( # ` f ) e. NN0 -> ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) = ( # ` f ) ) |
| 26 | 25 | adantr | |- ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( ( # ` f ) + 1 ) - 1 ) - 0 ) = ( # ` f ) ) |
| 27 | 17 26 | sylan9eqr | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( # ` P ) - 1 ) - 0 ) = ( # ` f ) ) |
| 28 | 27 | oveq1d | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) = ( ( # ` f ) - 1 ) ) |
| 29 | 28 | oveq2d | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) = ( 0 ..^ ( ( # ` f ) - 1 ) ) ) |
| 30 | 29 | raleqdv | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) ) |
| 31 | oveq1 | |- ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( # ` P ) - 2 ) = ( ( ( # ` f ) + 1 ) - 2 ) ) |
|
| 32 | 2cnd | |- ( ( # ` f ) e. NN0 -> 2 e. CC ) |
|
| 33 | 18 32 23 | subsub3d | |- ( ( # ` f ) e. NN0 -> ( ( # ` f ) - ( 2 - 1 ) ) = ( ( ( # ` f ) + 1 ) - 2 ) ) |
| 34 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 35 | 34 | a1i | |- ( ( # ` f ) e. NN0 -> ( 2 - 1 ) = 1 ) |
| 36 | 35 | oveq2d | |- ( ( # ` f ) e. NN0 -> ( ( # ` f ) - ( 2 - 1 ) ) = ( ( # ` f ) - 1 ) ) |
| 37 | 33 36 | eqtr3d | |- ( ( # ` f ) e. NN0 -> ( ( ( # ` f ) + 1 ) - 2 ) = ( ( # ` f ) - 1 ) ) |
| 38 | 37 | adantr | |- ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( # ` f ) + 1 ) - 2 ) = ( ( # ` f ) - 1 ) ) |
| 39 | 31 38 | sylan9eqr | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( # ` P ) - 2 ) = ( ( # ` f ) - 1 ) ) |
| 40 | 39 | fveq2d | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( P ` ( ( # ` P ) - 2 ) ) = ( P ` ( ( # ` f ) - 1 ) ) ) |
| 41 | 40 | preq1d | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } = { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } ) |
| 42 | 41 | eleq1d | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E <-> { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) |
| 43 | 30 42 | anbi12d | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) <-> ( A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) |
| 44 | 43 | anbi2d | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 45 | 3anass | |- ( ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) |
|
| 46 | 44 45 | bitr4di | |- ( ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) /\ ( # ` P ) = ( ( # ` f ) + 1 ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) |
| 47 | 46 | expcom | |- ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( ( # ` f ) e. NN0 /\ ( # ` P ) e. NN0 ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 48 | 47 | expd | |- ( ( # ` P ) = ( ( # ` f ) + 1 ) -> ( ( # ` f ) e. NN0 -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) |
| 49 | 15 48 | syl | |- ( ( ( # ` f ) e. NN0 /\ P : ( 0 ... ( # ` f ) ) --> V ) -> ( ( # ` f ) e. NN0 -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) |
| 50 | 49 | ex | |- ( ( # ` f ) e. NN0 -> ( P : ( 0 ... ( # ` f ) ) --> V -> ( ( # ` f ) e. NN0 -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) |
| 51 | 50 | com23 | |- ( ( # ` f ) e. NN0 -> ( ( # ` f ) e. NN0 -> ( P : ( 0 ... ( # ` f ) ) --> V -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) ) |
| 52 | 14 14 51 | sylc | |- ( f e. Word dom E -> ( P : ( 0 ... ( # ` f ) ) --> V -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) ) |
| 53 | 52 | imp | |- ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V ) -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 54 | 53 | 3adant3 | |- ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 55 | 54 | adantr | |- ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( # ` P ) e. NN0 -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 56 | 13 55 | syl5com | |- ( P e. Word V -> ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 57 | 56 | 3ad2ant2 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 58 | 57 | imp | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ A. i e. ( 0 ..^ ( ( # ` f ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` f ) - 1 ) ) , ( P ` 0 ) } e. ran E ) ) ) |
| 59 | 12 58 | mpbird | |- ( ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) /\ ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) |
| 60 | 59 | ex | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 61 | 60 | exlimdv | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( E. f ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) -> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |
| 62 | clwlkclwwlklem1 | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) -> E. f ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) ) ) |
|
| 63 | 61 62 | impbid | |- ( ( E : dom E -1-1-> R /\ P e. Word V /\ 2 <_ ( # ` P ) ) -> ( E. f ( ( f e. Word dom E /\ P : ( 0 ... ( # ` f ) ) --> V /\ A. i e. ( 0 ..^ ( # ` f ) ) ( E ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) /\ ( P ` 0 ) = ( P ` ( # ` f ) ) ) <-> ( ( lastS ` P ) = ( P ` 0 ) /\ ( A. i e. ( 0 ..^ ( ( ( ( # ` P ) - 1 ) - 0 ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E /\ { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } e. ran E ) ) ) ) |