This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | clsval2 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | df-rab | |- { z e. ( Clsd ` J ) | S C_ z } = { z | ( z e. ( Clsd ` J ) /\ S C_ z ) } |
|
| 3 | 1 | cldopn | |- ( z e. ( Clsd ` J ) -> ( X \ z ) e. J ) |
| 4 | 3 | ad2antrl | |- ( ( ( J e. Top /\ S C_ X ) /\ ( z e. ( Clsd ` J ) /\ S C_ z ) ) -> ( X \ z ) e. J ) |
| 5 | sscon | |- ( S C_ z -> ( X \ z ) C_ ( X \ S ) ) |
|
| 6 | 5 | ad2antll | |- ( ( ( J e. Top /\ S C_ X ) /\ ( z e. ( Clsd ` J ) /\ S C_ z ) ) -> ( X \ z ) C_ ( X \ S ) ) |
| 7 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 8 | difexg | |- ( X e. J -> ( X \ z ) e. _V ) |
|
| 9 | elpwg | |- ( ( X \ z ) e. _V -> ( ( X \ z ) e. ~P ( X \ S ) <-> ( X \ z ) C_ ( X \ S ) ) ) |
|
| 10 | 7 8 9 | 3syl | |- ( J e. Top -> ( ( X \ z ) e. ~P ( X \ S ) <-> ( X \ z ) C_ ( X \ S ) ) ) |
| 11 | 10 | ad2antrr | |- ( ( ( J e. Top /\ S C_ X ) /\ ( z e. ( Clsd ` J ) /\ S C_ z ) ) -> ( ( X \ z ) e. ~P ( X \ S ) <-> ( X \ z ) C_ ( X \ S ) ) ) |
| 12 | 6 11 | mpbird | |- ( ( ( J e. Top /\ S C_ X ) /\ ( z e. ( Clsd ` J ) /\ S C_ z ) ) -> ( X \ z ) e. ~P ( X \ S ) ) |
| 13 | 4 12 | elind | |- ( ( ( J e. Top /\ S C_ X ) /\ ( z e. ( Clsd ` J ) /\ S C_ z ) ) -> ( X \ z ) e. ( J i^i ~P ( X \ S ) ) ) |
| 14 | 1 | cldss | |- ( z e. ( Clsd ` J ) -> z C_ X ) |
| 15 | 14 | ad2antrl | |- ( ( ( J e. Top /\ S C_ X ) /\ ( z e. ( Clsd ` J ) /\ S C_ z ) ) -> z C_ X ) |
| 16 | dfss4 | |- ( z C_ X <-> ( X \ ( X \ z ) ) = z ) |
|
| 17 | 15 16 | sylib | |- ( ( ( J e. Top /\ S C_ X ) /\ ( z e. ( Clsd ` J ) /\ S C_ z ) ) -> ( X \ ( X \ z ) ) = z ) |
| 18 | 17 | eqcomd | |- ( ( ( J e. Top /\ S C_ X ) /\ ( z e. ( Clsd ` J ) /\ S C_ z ) ) -> z = ( X \ ( X \ z ) ) ) |
| 19 | difeq2 | |- ( x = ( X \ z ) -> ( X \ x ) = ( X \ ( X \ z ) ) ) |
|
| 20 | 19 | rspceeqv | |- ( ( ( X \ z ) e. ( J i^i ~P ( X \ S ) ) /\ z = ( X \ ( X \ z ) ) ) -> E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) ) |
| 21 | 13 18 20 | syl2anc | |- ( ( ( J e. Top /\ S C_ X ) /\ ( z e. ( Clsd ` J ) /\ S C_ z ) ) -> E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) ) |
| 22 | 21 | ex | |- ( ( J e. Top /\ S C_ X ) -> ( ( z e. ( Clsd ` J ) /\ S C_ z ) -> E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) ) ) |
| 23 | simpl | |- ( ( J e. Top /\ S C_ X ) -> J e. Top ) |
|
| 24 | elinel1 | |- ( x e. ( J i^i ~P ( X \ S ) ) -> x e. J ) |
|
| 25 | 1 | opncld | |- ( ( J e. Top /\ x e. J ) -> ( X \ x ) e. ( Clsd ` J ) ) |
| 26 | 23 24 25 | syl2an | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( J i^i ~P ( X \ S ) ) ) -> ( X \ x ) e. ( Clsd ` J ) ) |
| 27 | elinel2 | |- ( x e. ( J i^i ~P ( X \ S ) ) -> x e. ~P ( X \ S ) ) |
|
| 28 | 27 | adantl | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( J i^i ~P ( X \ S ) ) ) -> x e. ~P ( X \ S ) ) |
| 29 | 28 | elpwid | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( J i^i ~P ( X \ S ) ) ) -> x C_ ( X \ S ) ) |
| 30 | 29 | difss2d | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( J i^i ~P ( X \ S ) ) ) -> x C_ X ) |
| 31 | simplr | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( J i^i ~P ( X \ S ) ) ) -> S C_ X ) |
|
| 32 | ssconb | |- ( ( x C_ X /\ S C_ X ) -> ( x C_ ( X \ S ) <-> S C_ ( X \ x ) ) ) |
|
| 33 | 30 31 32 | syl2anc | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( J i^i ~P ( X \ S ) ) ) -> ( x C_ ( X \ S ) <-> S C_ ( X \ x ) ) ) |
| 34 | 29 33 | mpbid | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( J i^i ~P ( X \ S ) ) ) -> S C_ ( X \ x ) ) |
| 35 | 26 34 | jca | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( J i^i ~P ( X \ S ) ) ) -> ( ( X \ x ) e. ( Clsd ` J ) /\ S C_ ( X \ x ) ) ) |
| 36 | eleq1 | |- ( z = ( X \ x ) -> ( z e. ( Clsd ` J ) <-> ( X \ x ) e. ( Clsd ` J ) ) ) |
|
| 37 | sseq2 | |- ( z = ( X \ x ) -> ( S C_ z <-> S C_ ( X \ x ) ) ) |
|
| 38 | 36 37 | anbi12d | |- ( z = ( X \ x ) -> ( ( z e. ( Clsd ` J ) /\ S C_ z ) <-> ( ( X \ x ) e. ( Clsd ` J ) /\ S C_ ( X \ x ) ) ) ) |
| 39 | 35 38 | syl5ibrcom | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( J i^i ~P ( X \ S ) ) ) -> ( z = ( X \ x ) -> ( z e. ( Clsd ` J ) /\ S C_ z ) ) ) |
| 40 | 39 | rexlimdva | |- ( ( J e. Top /\ S C_ X ) -> ( E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) -> ( z e. ( Clsd ` J ) /\ S C_ z ) ) ) |
| 41 | 22 40 | impbid | |- ( ( J e. Top /\ S C_ X ) -> ( ( z e. ( Clsd ` J ) /\ S C_ z ) <-> E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) ) ) |
| 42 | 41 | abbidv | |- ( ( J e. Top /\ S C_ X ) -> { z | ( z e. ( Clsd ` J ) /\ S C_ z ) } = { z | E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) } ) |
| 43 | 2 42 | eqtrid | |- ( ( J e. Top /\ S C_ X ) -> { z e. ( Clsd ` J ) | S C_ z } = { z | E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) } ) |
| 44 | 43 | inteqd | |- ( ( J e. Top /\ S C_ X ) -> |^| { z e. ( Clsd ` J ) | S C_ z } = |^| { z | E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) } ) |
| 45 | difexg | |- ( X e. J -> ( X \ x ) e. _V ) |
|
| 46 | 45 | ralrimivw | |- ( X e. J -> A. x e. ( J i^i ~P ( X \ S ) ) ( X \ x ) e. _V ) |
| 47 | dfiin2g | |- ( A. x e. ( J i^i ~P ( X \ S ) ) ( X \ x ) e. _V -> |^|_ x e. ( J i^i ~P ( X \ S ) ) ( X \ x ) = |^| { z | E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) } ) |
|
| 48 | 7 46 47 | 3syl | |- ( J e. Top -> |^|_ x e. ( J i^i ~P ( X \ S ) ) ( X \ x ) = |^| { z | E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) } ) |
| 49 | 48 | adantr | |- ( ( J e. Top /\ S C_ X ) -> |^|_ x e. ( J i^i ~P ( X \ S ) ) ( X \ x ) = |^| { z | E. x e. ( J i^i ~P ( X \ S ) ) z = ( X \ x ) } ) |
| 50 | 44 49 | eqtr4d | |- ( ( J e. Top /\ S C_ X ) -> |^| { z e. ( Clsd ` J ) | S C_ z } = |^|_ x e. ( J i^i ~P ( X \ S ) ) ( X \ x ) ) |
| 51 | 1 | clsval | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = |^| { z e. ( Clsd ` J ) | S C_ z } ) |
| 52 | uniiun | |- U. ( J i^i ~P ( X \ S ) ) = U_ x e. ( J i^i ~P ( X \ S ) ) x |
|
| 53 | 52 | difeq2i | |- ( X \ U. ( J i^i ~P ( X \ S ) ) ) = ( X \ U_ x e. ( J i^i ~P ( X \ S ) ) x ) |
| 54 | 53 | a1i | |- ( ( J e. Top /\ S C_ X ) -> ( X \ U. ( J i^i ~P ( X \ S ) ) ) = ( X \ U_ x e. ( J i^i ~P ( X \ S ) ) x ) ) |
| 55 | 0opn | |- ( J e. Top -> (/) e. J ) |
|
| 56 | 55 | adantr | |- ( ( J e. Top /\ S C_ X ) -> (/) e. J ) |
| 57 | 0elpw | |- (/) e. ~P ( X \ S ) |
|
| 58 | 57 | a1i | |- ( ( J e. Top /\ S C_ X ) -> (/) e. ~P ( X \ S ) ) |
| 59 | 56 58 | elind | |- ( ( J e. Top /\ S C_ X ) -> (/) e. ( J i^i ~P ( X \ S ) ) ) |
| 60 | ne0i | |- ( (/) e. ( J i^i ~P ( X \ S ) ) -> ( J i^i ~P ( X \ S ) ) =/= (/) ) |
|
| 61 | iindif2 | |- ( ( J i^i ~P ( X \ S ) ) =/= (/) -> |^|_ x e. ( J i^i ~P ( X \ S ) ) ( X \ x ) = ( X \ U_ x e. ( J i^i ~P ( X \ S ) ) x ) ) |
|
| 62 | 59 60 61 | 3syl | |- ( ( J e. Top /\ S C_ X ) -> |^|_ x e. ( J i^i ~P ( X \ S ) ) ( X \ x ) = ( X \ U_ x e. ( J i^i ~P ( X \ S ) ) x ) ) |
| 63 | 54 62 | eqtr4d | |- ( ( J e. Top /\ S C_ X ) -> ( X \ U. ( J i^i ~P ( X \ S ) ) ) = |^|_ x e. ( J i^i ~P ( X \ S ) ) ( X \ x ) ) |
| 64 | 50 51 63 | 3eqtr4d | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( X \ U. ( J i^i ~P ( X \ S ) ) ) ) |
| 65 | difssd | |- ( S C_ X -> ( X \ S ) C_ X ) |
|
| 66 | 1 | ntrval | |- ( ( J e. Top /\ ( X \ S ) C_ X ) -> ( ( int ` J ) ` ( X \ S ) ) = U. ( J i^i ~P ( X \ S ) ) ) |
| 67 | 65 66 | sylan2 | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` ( X \ S ) ) = U. ( J i^i ~P ( X \ S ) ) ) |
| 68 | 67 | difeq2d | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( int ` J ) ` ( X \ S ) ) ) = ( X \ U. ( J i^i ~P ( X \ S ) ) ) ) |
| 69 | 64 68 | eqtr4d | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( X \ ( ( int ` J ) ` ( X \ S ) ) ) ) |