This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of Munkres p. 94. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | |- X = U. J |
|
| Assertion | clsval | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | |- X = U. J |
|
| 2 | 1 | clsfval | |- ( J e. Top -> ( cls ` J ) = ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) ) |
| 3 | 2 | fveq1d | |- ( J e. Top -> ( ( cls ` J ) ` S ) = ( ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) ` S ) ) |
| 4 | 3 | adantr | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) ` S ) ) |
| 5 | eqid | |- ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) = ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) |
|
| 6 | sseq1 | |- ( y = S -> ( y C_ x <-> S C_ x ) ) |
|
| 7 | 6 | rabbidv | |- ( y = S -> { x e. ( Clsd ` J ) | y C_ x } = { x e. ( Clsd ` J ) | S C_ x } ) |
| 8 | 7 | inteqd | |- ( y = S -> |^| { x e. ( Clsd ` J ) | y C_ x } = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 9 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 10 | elpw2g | |- ( X e. J -> ( S e. ~P X <-> S C_ X ) ) |
|
| 11 | 9 10 | syl | |- ( J e. Top -> ( S e. ~P X <-> S C_ X ) ) |
| 12 | 11 | biimpar | |- ( ( J e. Top /\ S C_ X ) -> S e. ~P X ) |
| 13 | 1 | topcld | |- ( J e. Top -> X e. ( Clsd ` J ) ) |
| 14 | sseq2 | |- ( x = X -> ( S C_ x <-> S C_ X ) ) |
|
| 15 | 14 | rspcev | |- ( ( X e. ( Clsd ` J ) /\ S C_ X ) -> E. x e. ( Clsd ` J ) S C_ x ) |
| 16 | 13 15 | sylan | |- ( ( J e. Top /\ S C_ X ) -> E. x e. ( Clsd ` J ) S C_ x ) |
| 17 | intexrab | |- ( E. x e. ( Clsd ` J ) S C_ x <-> |^| { x e. ( Clsd ` J ) | S C_ x } e. _V ) |
|
| 18 | 16 17 | sylib | |- ( ( J e. Top /\ S C_ X ) -> |^| { x e. ( Clsd ` J ) | S C_ x } e. _V ) |
| 19 | 5 8 12 18 | fvmptd3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( y e. ~P X |-> |^| { x e. ( Clsd ` J ) | y C_ x } ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 20 | 4 19 | eqtrd | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |