This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of Munkres p. 94. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | |- X = U. J |
|
| Assertion | ntrval | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = U. ( J i^i ~P S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | |- X = U. J |
|
| 2 | 1 | ntrfval | |- ( J e. Top -> ( int ` J ) = ( x e. ~P X |-> U. ( J i^i ~P x ) ) ) |
| 3 | 2 | fveq1d | |- ( J e. Top -> ( ( int ` J ) ` S ) = ( ( x e. ~P X |-> U. ( J i^i ~P x ) ) ` S ) ) |
| 4 | 3 | adantr | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = ( ( x e. ~P X |-> U. ( J i^i ~P x ) ) ` S ) ) |
| 5 | eqid | |- ( x e. ~P X |-> U. ( J i^i ~P x ) ) = ( x e. ~P X |-> U. ( J i^i ~P x ) ) |
|
| 6 | pweq | |- ( x = S -> ~P x = ~P S ) |
|
| 7 | 6 | ineq2d | |- ( x = S -> ( J i^i ~P x ) = ( J i^i ~P S ) ) |
| 8 | 7 | unieqd | |- ( x = S -> U. ( J i^i ~P x ) = U. ( J i^i ~P S ) ) |
| 9 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 10 | elpw2g | |- ( X e. J -> ( S e. ~P X <-> S C_ X ) ) |
|
| 11 | 9 10 | syl | |- ( J e. Top -> ( S e. ~P X <-> S C_ X ) ) |
| 12 | 11 | biimpar | |- ( ( J e. Top /\ S C_ X ) -> S e. ~P X ) |
| 13 | inex1g | |- ( J e. Top -> ( J i^i ~P S ) e. _V ) |
|
| 14 | 13 | adantr | |- ( ( J e. Top /\ S C_ X ) -> ( J i^i ~P S ) e. _V ) |
| 15 | 14 | uniexd | |- ( ( J e. Top /\ S C_ X ) -> U. ( J i^i ~P S ) e. _V ) |
| 16 | 5 8 12 15 | fvmptd3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( x e. ~P X |-> U. ( J i^i ~P x ) ) ` S ) = U. ( J i^i ~P S ) ) |
| 17 | 4 16 | eqtrd | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = U. ( J i^i ~P S ) ) |