This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | ntrval2 | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = ( X \ ( ( cls ` J ) ` ( X \ S ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | difss | |- ( X \ S ) C_ X |
|
| 3 | 1 | clsval2 | |- ( ( J e. Top /\ ( X \ S ) C_ X ) -> ( ( cls ` J ) ` ( X \ S ) ) = ( X \ ( ( int ` J ) ` ( X \ ( X \ S ) ) ) ) ) |
| 4 | 2 3 | mpan2 | |- ( J e. Top -> ( ( cls ` J ) ` ( X \ S ) ) = ( X \ ( ( int ` J ) ` ( X \ ( X \ S ) ) ) ) ) |
| 5 | 4 | adantr | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` ( X \ S ) ) = ( X \ ( ( int ` J ) ` ( X \ ( X \ S ) ) ) ) ) |
| 6 | dfss4 | |- ( S C_ X <-> ( X \ ( X \ S ) ) = S ) |
|
| 7 | 6 | biimpi | |- ( S C_ X -> ( X \ ( X \ S ) ) = S ) |
| 8 | 7 | fveq2d | |- ( S C_ X -> ( ( int ` J ) ` ( X \ ( X \ S ) ) ) = ( ( int ` J ) ` S ) ) |
| 9 | 8 | adantl | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` ( X \ ( X \ S ) ) ) = ( ( int ` J ) ` S ) ) |
| 10 | 9 | difeq2d | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( int ` J ) ` ( X \ ( X \ S ) ) ) ) = ( X \ ( ( int ` J ) ` S ) ) ) |
| 11 | 5 10 | eqtrd | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` ( X \ S ) ) = ( X \ ( ( int ` J ) ` S ) ) ) |
| 12 | 11 | difeq2d | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( ( cls ` J ) ` ( X \ S ) ) ) = ( X \ ( X \ ( ( int ` J ) ` S ) ) ) ) |
| 13 | 1 | ntropn | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J ) |
| 14 | 1 | eltopss | |- ( ( J e. Top /\ ( ( int ` J ) ` S ) e. J ) -> ( ( int ` J ) ` S ) C_ X ) |
| 15 | 13 14 | syldan | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) C_ X ) |
| 16 | dfss4 | |- ( ( ( int ` J ) ` S ) C_ X <-> ( X \ ( X \ ( ( int ` J ) ` S ) ) ) = ( ( int ` J ) ` S ) ) |
|
| 17 | 15 16 | sylib | |- ( ( J e. Top /\ S C_ X ) -> ( X \ ( X \ ( ( int ` J ) ` S ) ) ) = ( ( int ` J ) ` S ) ) |
| 18 | 12 17 | eqtr2d | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = ( X \ ( ( cls ` J ) ` ( X \ S ) ) ) ) |