This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of Munkres p. 97. (Contributed by NM, 26-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | clslp | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | neindisj | |- ( ( ( J e. Top /\ S C_ X ) /\ ( x e. ( ( cls ` J ) ` S ) /\ n e. ( ( nei ` J ) ` { x } ) ) ) -> ( n i^i S ) =/= (/) ) |
| 3 | 2 | expr | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( n e. ( ( nei ` J ) ` { x } ) -> ( n i^i S ) =/= (/) ) ) |
| 4 | 3 | adantr | |- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) /\ -. x e. S ) -> ( n e. ( ( nei ` J ) ` { x } ) -> ( n i^i S ) =/= (/) ) ) |
| 5 | difsn | |- ( -. x e. S -> ( S \ { x } ) = S ) |
|
| 6 | 5 | ineq2d | |- ( -. x e. S -> ( n i^i ( S \ { x } ) ) = ( n i^i S ) ) |
| 7 | 6 | neeq1d | |- ( -. x e. S -> ( ( n i^i ( S \ { x } ) ) =/= (/) <-> ( n i^i S ) =/= (/) ) ) |
| 8 | 7 | adantl | |- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) /\ -. x e. S ) -> ( ( n i^i ( S \ { x } ) ) =/= (/) <-> ( n i^i S ) =/= (/) ) ) |
| 9 | 4 8 | sylibrd | |- ( ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) /\ -. x e. S ) -> ( n e. ( ( nei ` J ) ` { x } ) -> ( n i^i ( S \ { x } ) ) =/= (/) ) ) |
| 10 | 9 | ex | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( -. x e. S -> ( n e. ( ( nei ` J ) ` { x } ) -> ( n i^i ( S \ { x } ) ) =/= (/) ) ) ) |
| 11 | 10 | ralrimdv | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( -. x e. S -> A. n e. ( ( nei ` J ) ` { x } ) ( n i^i ( S \ { x } ) ) =/= (/) ) ) |
| 12 | simpll | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> J e. Top ) |
|
| 13 | simplr | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> S C_ X ) |
|
| 14 | 1 | clsss3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 15 | 14 | sselda | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> x e. X ) |
| 16 | 1 | islp2 | |- ( ( J e. Top /\ S C_ X /\ x e. X ) -> ( x e. ( ( limPt ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { x } ) ( n i^i ( S \ { x } ) ) =/= (/) ) ) |
| 17 | 12 13 15 16 | syl3anc | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( x e. ( ( limPt ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { x } ) ( n i^i ( S \ { x } ) ) =/= (/) ) ) |
| 18 | 11 17 | sylibrd | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( -. x e. S -> x e. ( ( limPt ` J ) ` S ) ) ) |
| 19 | 18 | orrd | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> ( x e. S \/ x e. ( ( limPt ` J ) ` S ) ) ) |
| 20 | elun | |- ( x e. ( S u. ( ( limPt ` J ) ` S ) ) <-> ( x e. S \/ x e. ( ( limPt ` J ) ` S ) ) ) |
|
| 21 | 19 20 | sylibr | |- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( ( cls ` J ) ` S ) ) -> x e. ( S u. ( ( limPt ` J ) ` S ) ) ) |
| 22 | 21 | ex | |- ( ( J e. Top /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` S ) -> x e. ( S u. ( ( limPt ` J ) ` S ) ) ) ) |
| 23 | 22 | ssrdv | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ ( S u. ( ( limPt ` J ) ` S ) ) ) |
| 24 | 1 | sscls | |- ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) ) |
| 25 | 1 | lpsscls | |- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) C_ ( ( cls ` J ) ` S ) ) |
| 26 | 24 25 | unssd | |- ( ( J e. Top /\ S C_ X ) -> ( S u. ( ( limPt ` J ) ` S ) ) C_ ( ( cls ` J ) ` S ) ) |
| 27 | 23 26 | eqssd | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) ) |