This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | islpi | |- ( ( ( J e. Top /\ S C_ X ) /\ ( P e. ( ( cls ` J ) ` S ) /\ -. P e. S ) ) -> P e. ( ( limPt ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | clslp | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) ) |
| 3 | 2 | eleq2d | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> P e. ( S u. ( ( limPt ` J ) ` S ) ) ) ) |
| 4 | elun | |- ( P e. ( S u. ( ( limPt ` J ) ` S ) ) <-> ( P e. S \/ P e. ( ( limPt ` J ) ` S ) ) ) |
|
| 5 | df-or | |- ( ( P e. S \/ P e. ( ( limPt ` J ) ` S ) ) <-> ( -. P e. S -> P e. ( ( limPt ` J ) ` S ) ) ) |
|
| 6 | 4 5 | bitri | |- ( P e. ( S u. ( ( limPt ` J ) ` S ) ) <-> ( -. P e. S -> P e. ( ( limPt ` J ) ` S ) ) ) |
| 7 | 3 6 | bitrdi | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> ( -. P e. S -> P e. ( ( limPt ` J ) ` S ) ) ) ) |
| 8 | 7 | biimpd | |- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) -> ( -. P e. S -> P e. ( ( limPt ` J ) ` S ) ) ) ) |
| 9 | 8 | imp32 | |- ( ( ( J e. Top /\ S C_ X ) /\ ( P e. ( ( cls ` J ) ` S ) /\ -. P e. S ) ) -> P e. ( ( limPt ` J ) ` S ) ) |