This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit points of a subset are included in the subset's closure. (Contributed by NM, 26-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpfval.1 | |- X = U. J |
|
| Assertion | lpsscls | |- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) C_ ( ( cls ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | |- X = U. J |
|
| 2 | 1 | lpval | |- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) = { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } ) |
| 3 | difss | |- ( S \ { x } ) C_ S |
|
| 4 | 1 | clsss | |- ( ( J e. Top /\ S C_ X /\ ( S \ { x } ) C_ S ) -> ( ( cls ` J ) ` ( S \ { x } ) ) C_ ( ( cls ` J ) ` S ) ) |
| 5 | 3 4 | mp3an3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` ( S \ { x } ) ) C_ ( ( cls ` J ) ` S ) ) |
| 6 | 5 | sseld | |- ( ( J e. Top /\ S C_ X ) -> ( x e. ( ( cls ` J ) ` ( S \ { x } ) ) -> x e. ( ( cls ` J ) ` S ) ) ) |
| 7 | 6 | abssdv | |- ( ( J e. Top /\ S C_ X ) -> { x | x e. ( ( cls ` J ) ` ( S \ { x } ) ) } C_ ( ( cls ` J ) ` S ) ) |
| 8 | 2 7 | eqsstrd | |- ( ( J e. Top /\ S C_ X ) -> ( ( limPt ` J ) ` S ) C_ ( ( cls ` J ) ` S ) ) |